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The problem of thermal ucliling of shells which are
made up of bi-directionally reinforced composites have
been investigated. Such shells may be trcacted as ortho-
tropic shells - a special type of anisotropic shells. ihe
whole investigation is deévided into five scctions. In
sectionl bounds on effective elastic moduli are obtained

-

by using the variation principle. In section II, effective
thermal constants are obtained by using the excremum
principle of thermo-elasticity. Strain encrgy cexpressions
for orthotropic shells have becn derived in section 1IT.

In deriving the strain energy expressions, non-linear
stretching of the middle surface has been taken into consi-

deration. The result has been specialiscd for cylindrical,

Al
condcal and spherical shells.

=
)

The section IV treats the thormal stress probklens.

Two scts of equilibriuwm equations are derived for the case

of cylindrical and conical shells. The first set is

derived from the general ecguilibrium ecquations given by

Love. ihe second onc is derived by setting the first variation
of potential energy egual to zero., Ther:i.al stress problems

of cylindrical shells with types of orthotropy

arc solved for temperatures varying in axial,radial and,



in axial as wcll as radial direction, ¥For a particuldr
case, a comparison of the results obtained from two sets
0f equilibrium cquations has been madoe.

‘hermal buckling preilems have been troated in
section V. The Rayleigh-litz method hLas becen used to
obtain tho buckling criteria. 7The buckling criteria
contain pre-buckling rotation terms. owever in numcrical
Qélculations these terns have been neglected. -ror cylin-
Grical shells, the {ixed end case as well as simple
supported case has been concidered. For conical shells
only simple supported case has been investigated. Numerical
results have been presented for cylindrical shells

subjected to axial and radial tenperature distributions.
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SECTION 1

INTRODUCTION

I.1l Thermal Buckling of Shells

During past few decades, shell structures have been
found to have extensive applications in high speed air-craft,
missiles, jet engines etc. 1In some such applications,
anisotropic material has replaced conventional isotropic
material because of its more desirable properties. So the
use of anisotropic shells now-a-days, is quite frequent.
However, the‘étudy made on anisotropic shell structures, as
compared to isotropic shells, is considerably less. One
main reason may be, many more elastic constants involved,
which complicate the problem to a great extent.

A seemingly important problem that may be encountered
in designing an anisotropic shell structure for air-craft
or missiles, is the problem of thermal buckling. Such a
problem arises as the result of aerodynamic heating, caused
by the super-sonic speed of these space ships. When a
shell is heated in a non-uniform manner, thermal stresses
develop. When there are no external forces, these stresses
are self equilibrating and both tensile and compressive
stresses exist. Because of the presence of compressive

stresses, thermal buckling may occur.



The state of stress at which buckling occurs is re-
ferred to as critical state of stress and the corresponding
temperature is called critical temperature distribution.
Critical state of stress for a geometrically perfect
conservative system is independant of cause of stress (1l)*
Keeping this statement in mind one may see, that there are
three problems that are to be solved before the buckling
problem can be formulated. The first problem is of course,
Vthe determination of buckling stress. Leaving this problem
aside, the other two problems are, determination of temper-
ature distribution and the determination of thermal stresses
which arise from non-uniform temperature distribution.

As soon as the thermal stresses are known, the thermal
buckling problem can be formulated. The temperature can
be considered as characteristic parameter in the problem,
since with the variation of temperature, stresses vary.

Mathematical model for thermal buckling analysis of
structures is an eigen-value problem which requires the
determination of a characteristic parameter that occurs in
a homogeneous linear differential equation with homo-
geneous boundary conditions. The characteristic parameter

may be determined from the condition that the non-trivial

*Number i1n parenthesis refers to references



solution exists. In most cases, however, the exact solution
of the differential equation is not possible and so for the
practical purposes approximate methods are generally used.
An excellent review of some of these approximate methods,
with their relative advantages and disadvantages, has been

made by Pohle and Berman (2).

I.2 Object and Scope of Present Investigation

The present report is concerned with the problem of
thermal stresses and thermal buckling of shells which are
made up of bi-directionally reinforced composites. Such
shells may be treated as orthotropic shells - a special type
of anisotropic shell. Although in the present report the
results are drawn for cylindrical and conical shells, the
method of analysis is applicable for any shell of
revolution. As mentioned earlier, one of the problems to
be solved before the thermal buckling problem, is the
problem of determination of temperature distribution.
This is a problem of heat transfer and therefore, is not
considered here. Instead of that, some arbitrary temper-
ature distributions have been assumed and buckling criteria
have been obtained for them. An effective approximate
method, named Rayleigh-Ritz method has been used for
solving the buckling problem. This method is based on

the principle of stationary potential energy. The



potential energy of the shell is derived by assuming the
shell to be made up of anisotropic homogeneous material,
whose effective elastic and thermal constants are known.
The whole report consists of five parts. Parts 1 and
2 consist of the method of determination of effective
elastic and thermal constants of composites. Part 3 deals
with the derivation of strain energy for single and multi-
layered shells considering small deflections. Part 4 deals
with the thermal stress problem. The last part treats the

problem of thermal buckling.



SECTION II
PREDICTION OF ELASTIC CONSTANTS OF

BI-DIRECTIONALLY REINFORCED COMPOSITES

II.1 Composite

Before discussing the methods of determination
of elastic constants of composite material, it is worth-
while to discuss something about composite in general.

Although many definitions for composites are available
in literature, they differ widely and yet there is no
commonly accepted definition. The composite material with
which we will be concerned may be defined as (3):

"A material system composed of a mixture or combination
of two or more macro constituents that differ in form and/
or material composition and that they are insoluble in one
another™".

The nature of any composite depends upon the nature of
constituent materials and their shape and structural
arrangement. Where the constituent material may be metallic,
inorganic or organic and their ways of combination may be
virtually unlimited - the shape of constituents are re-
stricted to certain specific types. The major constituent
form that are used in composites are fibers, particles,
laminas, flakes, matrixes and fillers (Fig 2.1).

The matrix serves as body constituent. It encloses



the composites and gives it its bulk form. Fibers, flakes,
particles etec. are structural constituents that determines
the character of the internal structure of composite.

Figure 2.2 shows the different types of composite slabs.

Fiber Composite

Of all the composites, fiber composite has drawn the
greatest attention from structural engineers. A great
improvement in strength and strength to density ratio may
be obtained by combining a fibrous material of high strength
and of high elastic modulus with a light weight bulk
material of lower strength and lower elastic modulus.

Table (1) in Reference (3) gives some idea about the degree
of such improvement achievable with fiber composites.
Factors that appreciably affect the mechanical and thermal
properties of a fiber reinforced composite are orientation
(unidirectional, bidirectional, etc), length (continuous,
discontinuous), shape and composition of fibers, mechanical
properties of matrix and the integrity of the bond between

fiber and matrix.

II.2 Elastic Modulus of Composites - Introduction
For the analysis of composite shells, two methods are
available at present: (a) Netting Analysis and (b) Ortho-

tropic Analysis.



In the Netting Analysis, matrix is assumed not to
carry any load. All the loads are assumed to be carried
by the fiber, and these fibers are stressed uniformly.

This method has limited use for predicting membrane stresses
in filament wound shell and will not be considered here.

In Orthotropic Analysis, both matrix and filaments are
taken into consideration and equivalent elastic constants

4éﬁwmme4 . ] .
are . Therefore in Orthotropic Analysis the
composite shells are treated as homogeneous ‘anisotropic
shells having above mentioned elastic properties. 1In
general there are three approaches to the problem for
determining elastic properties of .composites.

In the first approach, known and regular phase .geo-
metries are utilized and gross .approximations are made to
the nature of the stress field. It is supposed, that the
materials are made up of various combinations of simple
elements which may be in series or parallel with each other.
Many papers are .available utilizing this technique. However,
such approach, is by all means, very elementary and should
not be relied upon.

In the second method, the composites are .allowed to
be subjected to some simple boundary .conditions. The

. _ 4&%nﬂhed _
complete stress field is by solving the boundary

value problem. The average stress and strain in the



détermned

composite are -foumd-—eut by considering the necessary volume
integral, and in this way the effective elastic modulus
which is the ratio of average stress and strain may be
computed. References (4-6) have used this method for
finding effective elastic constants.

In the third method, the variation principle is
utilized to compute the bounds on effective elastic moduli
in terms of strain energy. Bounds on strain energy are
obtained for simple average stress and strain field. Such
bounds on strain energy, in turn, bind effective elastic

moduli. References (7-8) have utilized this method.

I1.3 Determination of Elastic Constants

I1.2.1 Physical Concept: Unidirectionally reinforced
composites may, under cerfain condition, be treated as
homogeneous and transversly isotropic material. For
example, 1f we consider the reinforcement in X-direction
only (Fig 2.3a), we get a transverselly isotropic material
whose axis of isotropy is x-axis. Again if we consider
that the reinforcement is only in y-direction, the gross
elastic property is transversely isotropic in nature
where the axis of isotropy is in y-direction. Hence, at
this point, we can imagine bi-directionally reinforced
composite, as a composite of two phases - each phase

being transversely isotropic. The elastic constants



for the two phases may be determined by any one of the
available methods for determining elastic constants of
unidirectionally reinforced composites. It may be noted
here, in calculating the gross elastic properties of two
phases in terms of properties of fiber and matrix, only
1/2 the volume of matrix should be considered to be

associated with fibers in one direction.

IT.3.2 Theoretical Analysis:
The stress strain relationships for the first and

second phase are given by (9),
tx = Qy6x + A28y + 0267 + K8
Ty = Q6x + 0226y + Q362 + K20
£z = QuaGx + 0,36y + @267 + K0
Vyz = GgqTyz Yy = OppTxy Yxz = Ogg Txz ()

and,

Ex= 04Gx +*1ﬁca + 0&36} + KB

Ey = 0.2.6x + szzsy + 0, Gz + K0
€z = Q/36x + 0(26—)' +onGz + K/©
sz = alss ’('xz YIy = aelse’(x)' 731 = 05’5,(32 (2‘)



The elastic constants Qij and Q’g can be evaluated when

the elastic properties of fiber and matrix are known.

Let,

E = Young's modulus of the matrix

Y = Poisson's ratio of the matrix

E' = Young's modulus of the fiber in the X-direction.
V' = pPoisson's ratio of the fiber in the X-direction.
E" = Young's modulus of the fiber in the Y-direction
¥” = poisson's ratio of the fiber in the Y-direction
N = Fiber volume in percent.

Then according to Whitney and Riley (6)

Qu:”Ex
Qg = —?/Ex
Q= \/E

Ooz = 'K))'Z/E

-

Oeo= /G
O,44= 2(|-§y2)/ﬁ C3)

Where, Ex,V ,E ,\—)yzpé are given in the following

relations.

2
- (v'- 1-N)N
EK:ZV V) E'E ( ) | + E+(E'-E>’/\
EQ-2)U 4+ [LA+ (1+V)]E’ @

- 10 -



where, U= 1-v-2v% 5 Lz g yo2y? &
= y- 2 (v-v/) (1=V2)E'A

EQ-A)U+ [LA+C+V)E @)

<

Yyz = VA +v(1-2)

@)

E = [2E<1‘Vy27.€x]/[€x+42923 (8)
where,

K = [(K+@K - (K- K) GN] / [(K+4G) -Cx=O7] ©
K', K and G in the above expression is given by:

K= E/20-v'-2v?)

K= E/2(1-v-2V?)

G -.-. E/2(1+V) (10)

G = [(@+G)+(G-AIA] G/ (@+G) - (G-G)N] o
where

G'= E/2¢1+V) (2)

For the elastic constants in the other phase, we have,
O.;_z-- 1/Exz Ol’l = 1/§7_

Qb = -V2/Ex, afs = - Vv /E,

- 11 -



Qga= /G2 ass =2 (1= Vyz2)/E, , 03)

Where, Exz, \_)2 ,\)912 , (‘,2 are to be found in the following

way.
2
- 2(V"-VYEYE (1-A) A
- EH_E A \4)

X2 EG-AL" + [LA+ QO +Y)]E” tEerC ) (
Where,

L= 1-v -2v’ (3)

_ 2(v -v")C1-V*) E'A

V= V- , (e)

EA-MU + LA+ (+V)]E

3—)97_2 = V”7\ + \)(1'?\) 07)

Ko= [(K'+G)K -CK'=K)GA]/[(&"+G) -(a"-a)N]  (i8)
Where,

E, = [2R(1-Vy22)Exe] / [Ex, + 4R ] (9)

KII = EH/Z C1_v//_ Qv”?_) CZO)

Gy = [G+G)+(@G-G)A]G/ [@"+G) - @G"—G)A]  (2)

Let us now assume that the stress - strain relations

in terms of gross composite properties are given by,

- 12 -



Ex= Aubx + AnGy + A0

£y = A20x + A2:6y + A230z

€2 = A13Gyx + A3Gy + A0z

y'-IZ = A4y Tyz Yxz = Asglxz ny = A lry @2)

Now, to evaluate the bounds on Ag, a small cube of
composite material is considered. The strain energy of

the specimen is given by:

§) =1 (6)(67& + 6-)157 +G, &2+ ’(Xy ij + Tj; ng + TZx YZX)AV (23)

A\
l. Bounds on All

If the above mentioned specimen is subjected to uni-
axial tension in X-direction, then the strain energy in
terms of gross composite property will be

UCornp = Yo An O}V @4)

or, Ucomp = 1/25—2\///\11 (25)

Where, § is the macroscopic stress on the specimen in the

X-direction and Apn 1is the compliance of the composite in

the X-direction. The lower and upper bound on Al may be
found out by using the theorem of least work and that of

minimum potential energy (7).

- 13 -



The strain energy of the specimen subjected to the

loading as mentioned above may be approximated by

U= kéJ/;fﬁit dV

\%

(26)

where, Of is the summation of the product of compliance
in the X-direction and volume fraction of each phase. If

it is assumed that the fiber sizes in the X and Y - direction

are approximately the same, then,

o = (an+on)/2 @7)

Therefore, from equation (26) we get,

U = 3@_6} (Om-¥OJO 8)

Now, from the theorem of least work actual strain energy

ljcomp in the specimen cannot exceed U and hence, comparing

equation (24) and equation (28) we get,
At £ (an+ail)/2 @9

The lower bound of A,, may be obtained in the following

way. Let us suppose the cube is given a strain in the X-

direction. The strain energy for the loading may be appro-

ximated by,

- 14 -



U= Y f & (Vo + o) dV 0

\'

Now, from the principle of minimum potential energy,

UComP é U
Comparing equation (25) and equation (30) we get,

!
Q
Ay y 2l D)
(al\ +Qu)
For the bound§ of A,, @ the specimen is assumed to
be subjected to uni-axial tension in Y [ghé<g-direction and

the remaining procedure is the same as before. For the

bounds ofm A66’ a shear stress or, shear strain
s given [FEeermately) in [XZr#<Tand) X-¥ direction, de-

pending upon-the constants whose-bounds-are to be-evaluated.

Rest of the procedure is same as the first case. The

following results are therefore quite obvious.

2022022 < A2z ((Gzz +Q;z) .
CRET NI S Z ?

24, &, < An & (antad)
(Qn+a\’|) 2

/
2066 0"6,6 < AcG é QGG+O66
(Qge + 0ge) 2

- 15 -



SECTION III

THERMAL EXPANSION CO-EFFICIENT OF BI-DIRECTIONALLY
REINFORCED COMPOSITES.

ITI.1 Introduction

Although considerable work has been done for pre-
dicting effective elastic moduli of composites in terms
of its constituent material properties and volume fraction,
corresponding work done for predicting the effective
thermal co-efficient of the composite are comparatively
small. Some work has been done in this particular field
by Levin (10), Van Fo-Fy(ll) of Russia and Schapery (12)
of U.S.A. and few others. -

Levin derived the relation between composite thermal
co-efficient, composite effective moduli and constituent
property. Van Fo-Fy made a detailed stress analysis for
deriving effective thermal co-efficient of doubly pericdic
arrayed fiber reinforced composites. . Schapery found the
bounds on effective thermal expansion .co-efficients of
anisotropic composite material whose phaseas are isotropic
by using extremum principle of thermo elasticity. Such
method is also applicable for anisotropic composites with
anisotropic phases. Here the method of Schapery will be
extended for applying it to bi-directionally reinforced

composites.

- 16 -



III.2 Theoretical Analysis

As it has been done previously, it will be assumed
that bi-directionally reinforced composite is a composite
made up of two transversily isotropic phases. Let us
consider a cube of specimen under isothermal condition.
We assume the cube to be approximately homogeneous. We
further assume that the phases of the composite are un-
stressed at certain temperature, when there is no external
force present. The difference from the above mentioned
temperature level will be dgn%ted by © . At first, formulas
for effective thermal co-efficient of composites consisting
of generally anisotropic phases will be developed. This
result can be specialized for composites consisting of two
transversaly isotropic phases.

The potential energy of the composite specimen is

given by,

Vo= U+l

Where, U is the strain energy and () is the potential
energy due to external load.

Therefore:

b‘j g;éj - ZCze EL] av —/T.; U; ds )

S



We know,

6
ot = » b{yEl -cCi® ()
3=\
)
Ct = ZO‘JG:S + K6 &)
J=
e @
K = ;aejq
=)
6 5
C{_ = ZbLJ Kj ©
5=

Applying divergence theorem we get,

6 6 ©
f{%;;lbg gy - %F;e&: -%Ecb‘c}dV ®)

v
From (6) we get, the potential energy density = —jEJCﬁj(ce
L=\
6 6 6 6 N
| .o . .
-5 2. 056Gy - 5 2.2 bij Kikj® @)
(= 3=\ (=) §=!
Now the negative of total complimentary energy from Layxnhaar
1))
(14) 3
6 6 ©
Vo = - ﬂ"@z S iGisy + > Kisee |dv ®)
S {=1\ j={ =1
6 o
°°° V;-: V+]'—2-ZZ bL‘)KLKJeéV Cg)
g &=

- 18 -



If we assume now, that the composite is elastically homo-
genous and anisotropic, then the stress sgstrain relation will

be given by,

6
Z ch'Gj + K;6 (o)
=

Therefore the negative of complimentary strain energy in

terms of gross composite property is,

¢ 6
/[ ‘EZ Z Ay 665 - 26 Kic:e +C]dv o)
3= L=\

v =1 i

Where, C = C(a)is a function of temperature.

The potential energy is always minimum for all con-
tinuous displacements which satisfy boundary conditions
and the negative of complimentary energy is maximum when
exact stresses are used. Keeping the extremum properties

in mind, we may write,

- 19 -



where, V® and W? are approximate values of potential and
negative of complimentary energies. The bounds on thermal
co-efficients will be derived, considering the inequality (12).
We will now proceed to derive the approximate expressions
for energies. We assume a state of constant strain for the
derivation of Potential Energy. Such strain may be obtained

by assuming a surface displacement of the type,
\ll_ = eLJ 7(5

Where eij is constant and. elj = ji
So on substitution of equation (13) in (6) we get,

6 6 6
V=LY ) bjee ZC pei - ) sy
. (=1

1"
Nl
Ne
FV15‘ _
o
L)-p
()

:

P
M
™

(b&) KJ) O el - z 6..6:_

(14)

Where,
(b;.j)"u, + (bij), 0

- .Q' DR Y . » & .
(b)) = (i ki) vy + (b4 Kj), v,
il = € for L=1,2,3
€2 = € €z= €5 €3, = €4

- 20 -



Subscript 1 and 2 indicate the phases, vy and vy denote their

volume fractions. The value of v® will be minimum for a

a
strain that may be determined by the equation 2V =0.

o€
From the above equation we obtain,

6
a ..
BL‘J‘ ey - Z(bq Kj)qe -G = O
3= J=1

™o

Therefore,
.. . Qa .
€ = BL) (bJLKL) 6 + BLJ'(S]
Where,

By = [b]”

Substituting the strain in equation (14) we get,

) 6

6
“22 Z ‘Z Eijl [ Bie (bri KOQBJ‘m.
=

:| l={ m=|

(bmjks)* 6" + Bit (btiki)*Bjmome + BjmO.

(bmjKj)qBLLG_Q + BL[BJMG_M 3 i i

(=1 )=t

—21_

7 M

(5)

(ie)



o
[(bg ) 6 Bit (bui k) + (bij K5)"6 Bt Gt |

L=t L=

6
—Z i [ Bt (bum)“e Si - Bitoyoy ] (17)

Now let us assume a constant stress distribution; the

approximate value of VZ is given by,

6 6 6
Qa -
1 . T o
V. =-5 ) ) Qysic - ) Koo ®
=0 )=t j=1

A =/Clcj dv = (Qy), v + (0, "V,
V=i
and

Kj :f Kydv = () v+ (K,
V:\
Where subscripts 1 and 2 denote the different phases and

vy and v2 denote their volume fractions.

Linear Co-Efficient of Expansion

For finding bounds on thermal co-efficient of expan-
sion we set ;=0 and all other G} =O.
Substituting these values in equation (17) and (18)

we get,

- 22 -



1
V=3¢

‘GM"‘

3] 6 6
2 Z Z bf-ja[BiL (bLLKL)QBjm (bmjkj)"‘e’

| 4= L= =1

+ Bit(chKOo' Bj1616 + Byjm (bmjkj)*0 BLL Gy

6 b _6
+ BuBuo®] -5 ) ) (ke B (buki®

L=\ 5=\ L=\
i

L=t

6
(b K)')Qe Buc, - Z Bu(bltk\)aec'l - Buoy*
! t=1

< N

o, V'= -1 0?8} - #%se - N*&

(9)
6 © a
where , a&' = ZBH Z Z bu BL‘ Bj'
[: J I
¢ 6 a
fo - 'zz (b5 K" Biy +ZBLL(\»UK0 ‘f Zi[bfj'
L=1 j=I G2t g2t =
O. O. o
Bit (bii ki) Bjy + bij BjLBUCleKS)
6 6 e é € 6
\ = ZZ?(E\JK‘J) BLQ(blLK\.) ;_ZZZ.Z
=1 j=1I =1 =2t §=1 L=l ms)
ba-LJ- Bit (bei k)™ Bjm (bmji )of
And,
(72 - —_
VC = "lz‘ O.\\Gz— K‘CYG Qo)

- 23 -



Therefore, inequality (12) becomes,

- - 2
-+ Q0% - K06 L=k Ao -Roe +C £ ‘v'z a, o

L
2
_Th(l _— a 2‘ lii b'o KlK‘ez

06 - N8 +3 [ ARNAN (2))

(=1 4=

The inequality is rewritten in order to isolate the unknown

function C = C(8).

-+ (0, - AN o2+ (x,-Khoe £ & "i (A _a&)o_'z

¢ ¢
+(R-kM)oe -e* [N -1 Y ‘ “oijtKﬂ (22)
<5

=\

~

Maximizing the left hand side and minimizing the right hand

side with respect to O we get,

(K -K)6 239)
@G = AN
= - QK_"E? (23b)
(Av—-a3)

- 24 -~



Putting these values in (22) we have,

(B -K) < 2C (.C—-l—_"%a) .a—lEXB' K‘KJ) (24)

@ —An An) ~ (An- GiJg=

The function C may be dropped out from our consideration
because of the fact that right hand side of inequality (24)
is never less than left hand side, irrespective of the
value of C.

Therefore, from inequality (24) we get,

(K,-K) (&, K")

Where,
K= Ko+ (K-R)(@-An g 2o
(EL\\ - aﬁ)

K" = K &2 _R Qu - A
K+ (k] \> g__d“‘ . 8{:‘? + B (27)

e {(RA0-2) + B@-A @-maneat
(0w - a%)* (Gy - a%)

-2 5 2 6 © ‘/2
X { Ky . X +NE-1) ) bj K;Kj]}

(Ou—A\D (A\\—aﬁ) (=1 j=!

(28)
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N
Inequality (24) is satisfied only when K'{ X ,{ K and
/)
hence K', K" are lower and upper bound of effective linear

thermal co-efficient of composite in X-direction.
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SECTION IV

STRAIN ENERGY EXPRESSIONS

IV.1 Introduction

It has been pointed out earlier that in the present
investigation, an orthotropic analysis will be made; ie.,
the composite shell will be treated as a shell made up of
homogeneous anisotropic material. For the case, where the
reinforcements are in two perpendicular directions, the
composite exhibits the property of a special type of
anisotropy - called orthotropy. Hence for finding out the
strain energy expression of shells made up of bi-direction-
ally reinforced composite, it is required to find first,
the strain energy of an orthotropic shell.  In the ex-
pression of strain energy so obtained, the .elastic constants
are to be replaced by the effective elastic constants of the
composites. However the same problem can be attacked in another
way. The shell mentioned above is, in actuality,; a multi=layered
shell where each layer is unidirectionally reinforced. - Therefore
the strain energy of the shell will be that of multi-layered
anisotropic shell where each layer is transversely isotropic.
Hence in the following pages, the strain energy ‘expression for
the single layered anisotropic as well as multi-=layered aniso-

tropic shell will be derived and the results will be
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specialized for the particular cases.

IV.2 Brief Review of Geometry of Shells

IV.2.1 Surface theory: 2 surface may be defined by
the equation of the type X = X(x,y), ¥ = Y(x,y), 2 = 2(x,y),
in which X, Y, 2 are rectangular coordinates and x, y are
parameters which are called surface coordinates(13). A

point can be located by the following wvector
F= RU+Yj +Zk Q)

where i, j, k are unit vectors along X, Y and Z direction.

A surface can be represented by the vector equation

r=v(x,y)

Surface coordinates x, y are orthogonal if ?% . ry = 0
where E;(E&) is partial derivative of the position vector
with respect to x(y).

The square of the distance between two neighboring
points with the surface coordinate (x,y) and (x+dx,y+dy) is

given by

de? = di. dF = A%dx* 4+ Bldy? @)
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- 2 2 2
AQ-:: rXorX =X7_ +Y¢+Z,¢

Bz-'-' TyoF) = X; +Y;-+ Z@‘ €))

From the equation (3) it is seen that the magnitude of

T, and r are A and B respectively. So the area of the

surface is given by IJ AR dxdy .

From the definition of cross-product the unit vector,

normal to the surface is found to be

A 'T'r.x'fy @
"= AB

Second Fundamental Form of Surfaces

edx® + 2§ dxdy +9dg,2 = —dF.dn %)

For orthogonal surface coordinate, e,f, g are given by

e Z?Ixoﬁ = ‘?\xxo(r-\x)(F‘y)/AB
f= Tayoft = Moy, (Txiy)/AB
§= Tyge ™ = Tyyo (TaxTy)/aB (6)
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Extreme values of curvature are denoted by l/rl ang l/r2 and

are known as principal curvatures. Lines of principal
curvature coincide with coordinate lines, only when the

coordinates are orthogonal and f=o. In that case

a
Y6

—€/p2

_8/67_

Theorem of Rodrigues

When the line of principal curvature coincide with

coordinate lines, then

IV.3 Geometric Representation of Shells

Let the middle surface of the shell be represented by

X=X(x,y), ¥Y=Y(x,y), Z=2Z(x,y), where X,y are orthogonal

&)

€]

surface co-ordinates. Let +z be measured from this surface;

positive 2 is measured in the positive sense of the surface

normal (see equation 4). Let the free surface of an un-

deformed shell be represented by the surfaces z = th/2,
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where h is the thickness of the shell which may be a
function of x,y or, constant.
The surface z = constant in the undeformed shell is

defined by the equation

;3\:'?+zﬁ (9)

Differentiating with respect to x and y one obtains,

Ru= Tt Tz Ry= Ty+yz o)

respectively,

4) )
From the theorem of Dupin,it may be seen that if the shell
co-ordinates are orthogonal, the co-ordinate lines on the
middle surface must be lines of principle curvature. Hence

Rodrigues theorem can be applied. From equation (10) and

(8) one obtains,
Rx= (1 +2/17) & Ry = (1+2/n) % Rp=1 an
Now,

- _ - - - 2
as* = dR.d4dR = (‘2161 + Rya_y + dez.) (\2)

From equation (3), (l1ll) and from the fact,f&-ﬁ-=f§°ﬁ
- T)“O-@=ob

ds* = o*dx? 4 ﬁzdg"‘ + Ydz? (2
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where,

o= A(1+2/n) B= B(1+2/r2) Y=|

(i4)

0{,& and Y are called Lame' co-efficients.

IV.4 Strain Energy Expression for Orthotropic Material
For convenience let strains in the directions x,y,

etc. be represented by E\,Ez etc, respectively, ie EI’EB

€y=€2

>

Ez=€3 ’ ))yz= 84 > ))7_1'185 R ))7.3-: Ee.

The strain energy density of a hookean material is

given by (2)
21 I~ &
Us = -'2-2 X \DLJ' eig - Z(Cce+8i.) EiL+ Const. (13
L=| J'=| {=i

where bgé are called moduli of elasticity (9), Cis are
thermal constants and © is the temperature. If the origin
of strain is so chosen that %,::O and neglecting the constant

term, we get,

6
by €€ - Z Ci®& (ie)
=1

- 32 -



For orthotropic material (9)

bl4 = b24 = _b34= b46 = bls = bas = b35 = bse =b|5=

b2 = bze = b4as = C4=Cs= Ce=0. €5

Hence the expression for strain energy density

| 2
Uo = 2 [bll€|2+2b|2 Ei€a+2bi3£1€3 tha2 E;_l+ b¢e 56?“'53383

+2b2382E3 + bag €4 +bss E?J-e[c.é. +C, €, *5353)

(18)
IV.5 Strain Energy of an Orthotropic Shell
For a shell co-ordinate the strain displacement re-
lations are approximately given by .(14),
1 2
2A
2
£, = & (Beufot + vy +Bw) + Wy
g 2B
Yyz = U_)_"-‘—Uz "BZU
B B
= W, + @2 _ ozl
Yo = Up +2 otz
Yy = Yy + Vr = BxVY _ oyu + WxWy
T B T X T aB B AB Cig)
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Where u,v and w are displacements in X,y and z directions.
Now it is assumed that the transverse shearing stresses

Txz | 'Z'yz vanish which gives Yxz = ng = 0. Also it

is assumed that () does not vary much with z and hence is a

function ofx and y only. So from equation (19) we get,

2 (U W= _ 2 '\2> Wy _
az(&> T O az(g * 82 =0 (29
Noting from equation (14) o= A CH- Z/r.) R @: B(H—Z/rg)
and Y=, we get from eqn. (20),
1 r;
U= (*);r + o f(xy) V= wg =~ + Bg=w @)

From the condition u=u and v=V at zs0 we get,

(23)

From equation (19) and (23) we get the strain components as

p) CXE-ZGJIJ oy BV - 2097 | olpd 2
[ +cx['35 J+; +(§2§2
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2 BV -zWy 6_
& = ay[ B J*BI

"B
yxﬁ zoﬁk gx[g%%w]

all -
A A

Bzw 0)3
]+ 8 +:?.B2

+

?f 2 XFL!;_E!EE-X + Wx Wy
B oy XA AB

@w
Love (15) proposed that equations(24) can be linearized in z
Then,

Ex= Cxt+zKx €= & +2Ky Yy = €xy+2 Ky (a29)

Where e ey and exy are the values of Ex’ Ey and &£

the middle surface of the shell.

Setting z=0, we see from equation (24)

- = 2
& = '%EE + 12f§2 + W EEE

AR e 2A%
= — 2
e, = \_);3 U Bx L*)_ Wy
Y % TRe t{ ot
'Tk U Ay U Bx U Wax Wy
e = == 4+ X AYS_ BV
T A B AB AB AB @&
Ky s K,r Ky, are obtained from equation (24)

and (25) and
they may be approximated (14)as
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= -1l (Wx) _ AyWy
K ~

A oX A B2
K, = - BxWx _ I__a_ (&
4 AB B\ B

2 ([AyW W
ny: <>'X+Bx y_wx),>

AB\ A B (27)

Now putting the values of e ey etc. in the equation

(18) the strain energy density becomes:
2
Us = 5 [b,. (Ex+2Kx) + 2bi2 (€x+2Kx)(Ey +2Ky) + b22.

.(ey +ZK)')2+ bee (fxy +ZnyjL] -0 [C| Cex+2\<x> +C2(9y+ZKy>_]

. (28)
Now, if the volume element of the shell O(B dxdydz

is approximated by ABJzA),dz then, W/

Total potential energy 1J = //AB c]xdy /Uo dz

- h/?.

:—{2-//(\31\6-2' + b eg beee%3 + 2bi2 exe),) LA B dxdy

| |
t24 [/(b.. Kz +bes Ky + baak? + 2biz Kx Ky) WAB dxdy
_[j[(c\e“ Cey) 6o + (Cikx + GoKy) e.] ABdxdy (9
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where

f@c\z

-h/y

a :~[92AZ €]

To check that this expression reduces to standard expression
of isotropic case we proceed as follows.
s sel
To evaluate bll' b22, b12 etc. in terms of QUjs , we

observe the following relations:
Ex = O Ox + Qi26y + K8

gy = O~|2§x + 0\27_6_} -+ Kze

From which we obtain,

a - K.

O-x = 7 z Ex + ——————2Q Ey— S (K|azz 2 ;_i

a0y, - O3 Qiz - Q022 Q022 - Q7

- KO

G'y = Q2 E’L + Qan E){ e( K|70:\2 Ko ll)

02 -0y Qs2 QyQag — 0% ouz — Oy Onz

Hence,

b“ = Q29 / (Q\l(l?.Z - a\f‘)

biz = Ouz/ (Ql?i - Qua22)
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boo = an / (anora - o.lzz)
Cr = (K022 - K2Qy2) / (22 —inz)

Ce= (Kla\z - KQ_QH)/ (Q?T?_" O-HO.?.Z)

For isotropic case,
Qy = 1/E Qua = =-V/E Q22 = /e Ki= K=K

Therefore,
b= b2z = E/f1-V?)
biz = VE/(-v2)
bes = G
Ci= Cz= KE/-y)

Substituting these values of bll’ b22 etc. in the

equation (29) we obtain the strain energy expression,

0 v) //(KI ‘l‘Ky + ZVKZK)-’. L(l -v) Kxj)WABAZA)I

—(j;_v) // [(Ex'l-e)) 6, + (Kz+Kky) 9!} ABdxdy .
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The above expression for strain energy is identical to

that given by Langhaar (14)for isotropic case.

IV.5.1 Strain Energy Expression of An Orthotropic Cylindrical
Shell

Let X,Y, Z be rectangular co-ordinate. The middle

surface of a cylincrical shell is defined by
X= X Y= aSiny Z = o.Cosy

where, x and y are surface co-ordinates as shown in
Figure (4.2).

From equation (3), (6) and (7)
A= B=a T, = oC Th=CQ

Strains of the middle surface of a cylindrical shell

as obtained from equation (26) are,

ex.= ux + Séi
2

= 2.
o 20

Cxyx Uy + Ty 4 Waldh
o8

o

Gy
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And from equation (27), for a cylindrical shell,

K')( = - wx_x_
__ Wyy

i~
_ 2 Wzy

Kx)— a.

)

Putting the values of ey ey, Kx’ Ky etc. from equations
(31) and (32) into the strain energy expressions given by

equation (29) we get,
) - 22
Strain energy |J _é-(/ [bn(u,d (%71-) + bu(moj-w

+UJ§' 3 b X U.y Wrwy ¥ 2b 1 U):-
E)"’ ee(’\)l+a+ >+ \2(u1+_1_)x

o]

(e, f_;;)] o dxdy

l
+ = f [b Wi + 4dbee (D%
24 n Wxx L Xy

+ baa WYy 4 2bip Wrx Wyy ]txsadxc]j
o4 oz
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- [C‘ Wex + C2 wg’;’] e'} O.dxd)l L33>

IV.5.2 Strain Energy Expression of an Orthotropic
Conwsial Shell
Al

Let X,Y, Z be rectangular co-ordinates. The
middle surface of a conical shell with the vertex at the

origin is given by the equations (see Figure 4.3)
X = xcos™ Y= xsinasiny  Z = xSinatCasy (2)
From equation (3), (6) and (7), we get,
A= B= XSinak n=00 K= xtand (35)

The strains of the middle surface of circular conical

shell as obtained from equation (26) are

2
- o)
e-x = Ux + Zx—
0 M w W
&= —— + = 4 -
X Singx xX Ltano 2x2sin%*x
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= W v Wx W
=V + =2 _ - 2 £d
Cxy * 7 XSind * ¥ Xsra (36)
From equation (27) we get,
Ky = — Wxx
K, = P Wyy
J X x?Sin*e
K’Iy - 2(*-))’ _ 200:9
%x2Sing x Stnal

Putting the values of e_, e , K, Ky etc, from equation

Y
(31) and (32) into the equatlon (29), we get,

Strain energy U = [/ bn ux+ -——) + b22< v”

X Sind
* %‘ * Ytana zufzs\'n‘-o( ) + bee |\ Ve ':;mo(_pi
Wx Wy \* + 2bn (Dl-rwz") Yy 4y
% Sinol 2 xXSinat x
W N W3

X tonat 2125in* )] f‘7‘5‘"’10“3’“‘)’.
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{ 2 2
+ 5 bl Wxx + bee(zw’ - 2wxy (_Q,_c_
24 //{ isine. xsma) T b22 ~ T

Wyy 2 Wz W 3
) + 2b12 Waxx = + *JLT?\’TO\ }c-\_xSmoldxc]j

+
x25in*X

2
- U, + & ) L ow
[[{[C‘< al 2 ) * Cz(ﬁnd-}‘ x t xtono\+

2
Wy - W Wyy .
zxﬁs{nld)] eo [C\ O‘JIZ t C2 x + xlsW\td>] e}xstﬂd
.dxdy,

(39

Strain Energy Expression of an Orthotropic

Iv.5.3
Spherical Shell
The middle surface of the spherical shell with the

center at origin is given by the equation (See Figure 4.4),

X = asinx Sy Y= Qsinx cosy Z= QCosXx

where, a is the radius of the middle surface, x is the

colatitude and y is the longitude.
For spherical shells,

Az Q B= asinx
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Therefore, the strains of the middle surface of the

spherical shell are given by

Ux 0w W

Ex = —F - — 4 =%
x o o + 202
2V ¥ 2
'y W CosX
ey: - + - _Q + u_)h_,
aSinx o.Sin O. 20%5{n“x
U 0 A9 w
ex_y= x.+ .y _ VCosx Wx Wy

— +
a asinx ASinx o5'nx

Kx' Ky and %q’are given by

Wxx
Kx = - O?‘
Q2sinx o5/n?x
Kx = 2 {-Cosx 0 - C)ny
77 o*sinx S X 4

From equation (29) strain energy for an orthotropic

spherical shell are found to be U = |Z ff[\on (u"'w
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2 \2 _ _ ”
wx Y, Ucotx - W 2
t o2 +bzz(’+ COLX +U3>"2>
20' o O 20251

Y 2
O - Ucosx + Wx Wy/a _ 2
+ ‘966 + J ' 7 +2b|g_ Ux LQ+ W
a aAsSinx o 2o~

-~ vt 3
1;2 + ul‘c.otz -w + Wy _ >] fotsinxdzdy

o 20> Sint X

+ 24_ f b wxx +4bes (Cofxwy-wzy) + boa (Dxdz

04 Sintx
Wyy 2 Wy Cotx W
b4 W
az‘s’.'n‘x) t 2be ( T o}-ﬁ'h“x) ”*]L\O"Smxclx&)

Ox-w w2 Oy Tcotx - 43
// {\-.Q( "a * 25\‘) + G as\nx+ a

+__Z,_22):smz>] [C b.)xx + C‘ (wzCo'\'z + :;:‘an]Q'}

« 0FSin*x c\‘xcly .
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IV.6 Strain Energy Expression for a Transversely
Isotropic Material

For transversely isotropic material we have the

following relations (9)

b= bis = bie = byy= bas= bee = bay =bas = bze

= bas = bae =bse=0 ;

Also,

bee= bas  , bu=bsz . b2s=bp, bssz2(bu-bi)

So from equation (1l6) strain energy density expression

for trangversely isotropic material becomes,
U, - zl(bu(iﬁ € ) + 2bi3 E1€3 + 2biz (E€2 + €2s)
t ba2€ + bas (§+€2) + bss es’] - e[c.

<£| fEs) + C2 82]

IV.7 Strain Energy Expression of a Transversely Ig%tropic
Cylindrical Shell

A look at the equation (18) reveals that strain energy
density for transversely isotropic shells will be the same as

that for orthotropic shells.
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IV.8 Strain Energy of a Multi-Layer Anisotropic Shell

The anisotropic shell considered here is assumed to be
made up of N number of orthotropic layers. One of the axes
of symmetry of theée layers is always normal to the surface
of the shell; others are arbitrarily oriented. Let us assume
that the axes of symmetry of any particular layerti,p make P
with x and y respectively.

Assuming a state of generalised plane stress in the

nth Lamina of the shell, the stress-strain relationship will

be given by
g (n) h 4 (h) ) »® ~N ” -
S by b bie™ M- cMe
(n ) ) % ()
G, = b2 ba2 bae g _ Mg
(r * ) (m
Ce ) 16 < bee e{m — Mo
B \ J L /

where subscripts 1, 2 and 6 to the stress-strain tensor
indicates corresponding quantities in x,y and xy directions
of the shell co-ordinate respectively.

b (n) can be obtained from bi' (elastic co—efficients

ij i's
in the principal direction) by the transformation law

given in Reference (9).

*These terms are zero for orthotropic or transversely
isotropic layer.
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Thermal co-efficients Kl(n), Kz(n) and Ks(n) can be

obtained from the following relations.

K,cn) = K, Coslgo + Kz 5\"n7'§0

(n
K: = K;sin®¢ + K, Cos’p

6(") = (Kz - Kn) Sx'n’CP Cosp

where Kl' K, and K6 are thermal co-efficients in the

2
principal directions.

Total potential energy of nth layer is given by
hn
HAB dxdy f U, dz
e

(n o ) 2
/ lDII €x + baa ey + bee Exy +25|2)Ez €y

U,

"

(n) )
+ 2bie €4 exy + Zb'nZG €xy e)’] \I"n- hn"]ABA"JY
[ D) ) n
+6[([b x+an>'+562K:7
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(m

(m
+ 2bjps K= Ky + 2b‘6 KxK-xy + 2b2e K), ny] [hB—\'\::_'

* AR AOCQy.

n n) n
-— [[ [(Q(h)ex + Cé )Ey + Cngxy) So + (C\( Kx Cz( )K/

+ Ckay) )] ABdxdy

where,
hﬂ
E% = J(I€>AZ
kn_\
hﬂ
B, = Ozdz
h

Total strain energy of the shell will be given by

U=, U
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Section V

THERMAL STRESSES IN SHELL

V.l Equilibrium Relations

The following stress notations are used. The stress (ji
is normal to a plane perpendicular torx-axis; the stresses
‘]% WW1Z%are tangent to this plane and directed in y and z
directions, respectively.

Love (15)derived the differential equation for any
orthogonal co-ordinates. For shell co-ordinates, in the

absence of body forces, Love's equation becomes,
2 XA
§_1<6GZ) + —B-y (O(T-;cj) -+ %Z (de sz) + -a—y ’SXj

0 B -0
‘1’632712 5

2 (8%x)+ %@myn 2 (4BTp) t 2Tz

o o8 _ 33 —
+ 5:7_'(32 é—}@‘x =0

2 (8%2) + 3,(8Tyr) + 2,(a862) - 8%;0;
_ a8 & -
2g 6y =0

)
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In the investigation of thermal stresses, small dis-
placements will be assumed; such that effects of deformation
on equilibrium equation can be neglected.

In the equation (1), X and 6 are Lame' co-efficients

and they are given by the following equation.

A = A(l'\"z/ﬂ) 6= B(|+Z/r-,_) CQ)

Figure (5.1) represents a differential element of a
shell, cut out by surfaces x=constant, and y=constant,
The variable x, y and z are orthogonal shell co-ordinates.
The tension (Nx,Ny), shears (Nxy, Nyx, Qx, Qy), twisting
moments (Mxy, Myx), and bending moments {(Mx, My) per unit
length of the middle surface may be expressed in terms of
stress components(d‘x‘Gy,?xy,leand (I

The complete set of relations is,

h/o

Nx = Sx (1+ 2/v,) dz
~h/y
ho
Ny = Oy (|+-Z/ﬂ) dz
-h/z h/,_

Nxy = Cey (14 2/n) dz

“ns
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ha.

dz
%)
(1+

Ty

Nyz =

-hfy

Z/r) dz
. (1t
2

_h/z

X
]

fr(t)
G}I_

Z
) YSx d
h/2 z/rz
I+
z(
J dz
) ) ) Oy
" (|+ z/r
z
A
| y Tx)d
M) h/2 +Z/rzj
(i
4
| dz
_.;.,/z ‘XJ
Mxy b2 e
f (1+
Z
be = —h/z
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These representations of tensions, shears etc. are
similar to what Flligge (f) used.
The complete set of equations derived by Langhaar (14)

is,
°
5 (BNx) + B (ANyx) + Nxy ?;5? -Ny2B 4 &P 6
2 2B _ Ny 20 4+ ABR
3% (BNxy) + 5, (ANy) + Nyx 5 = Nx g5 + 575

+ ABPy = O

B
2 (Bax) + 2 (Ay) - P_*F‘? Nx - AP Ny

2 2A _ My 2B
JQ(BM,C) + 'aay (AMyx) + Mxy 55 v 22

- ABQAx + ABRy =0

CBij) + = (AM7> + M)'I 'BB - Mx aa/;\

- ABQy ~ABRx=0
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The equation (4) is supplemented by the identity,

Mxy _ Myx  _ Nyx —Nx 5
\f a - 4 ‘)’ C)

V.2 Strain-Displacement Relations

Strain displacement relations for a shell has been
discussed in Section IV. In this section we will assume
those relations. However, for the problem of thermal
stresses, the second order terms in the strain-displacement

relations will be neglected.

V.3 Cylindrical Shell

Until now, the discussion made in this chapter is for
general case. Now the particular case of orthotropic
cylindrical shell will be considered.

For a cylindrical shell strain-displacement relations
are given by equation (31) and (32), Section IV. If we

neglect the second order terms, these relations become,
Cx = Ux — ZOxx
€y = (Vyt+w)/a - 20y /a?
Vx)» = Uz + W/a - 2z Wxy/o

(6)
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The stress-strain relations for orthotropic shell is given

by,

Ox = buéx + bi2ey —Ci6
6)' = b\?.‘c:x + bQ_Z Ey -0

ny = bae X&y &)

Substituting (6) and (7) into (3) and noting that r, = o0

and r, = a, we get,

Nx = [buax + bz (’Gy‘fw)/a] —lb; [bl?.wyy/a3 +

h/2
bn wm_/o.] - fC.B Qt+z/a)dz
~ha
_ W2
Ny = h[bIZ Ux + b2z C'l_))-rw)/o.] — f C,0dz
—h/l
Nay = h [bee (Br+Ty/m)] - WiyH/ea
Nyx = h [ bee (Tx+ Uy /o) |
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= K vl By + v w
Mx \__b\lux + bz ( )’——6_—— - a:_”) —buubuof]

120
hiz
- fc,e (z+Z/o)dz
—h/y
W2
_ = b hiuxx _\9__7_._1%3()) - jczzedz
My = 2 or 77

Mxzy = Lii [bee (Ve + W/o —203"—})]

GO- ®)

For the case of axi-symmetrical loading and boundary

conditions, Nx, Ny etc. take the following form.

hj2
Ne=h[bu Dy + bzwp] - lhio‘f\\ Wxx —jc‘e (|+7-/o_)dz

—h/2
h/a
Ny = l‘-[bW-Uz + b2z w/a.] - _{ C.6dz

—h/?.

N':Cy =0
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Mx = h’ [ bi Ux + b2 wja. — bu bexo-]

120
h/a
fc‘e CZ-[- z"/a) dz
-h/z_
h/2
Wbi2 — | Crzedz
-hla

Mxy =0

Myx =0
(9)

The equilibirium equation (4) for axi-symmetric case

of cylindrical shell is reduced to

Nz M

5% = @) 5% Qx =

9@12 N

— T Ny =

S5 /oo P2 =0 )
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From last two equations of (10) we get,

2 .
g_ﬁ/‘x — _N_>’ + P2 =0 <))
DX O-

If the shell is considered to be homogeneous, then
bll’ b12 etc. are independant of position. Now, substituting
equation (9) into (10) and (11l) following equations are
obtained.
/2

iy - O - biz Q.

—hll

= 0
(1)
2 —~
W (Oxxxx + 22w _ W Uexx + 22 Ux _ R
12 bl o2 2o bil O- by b

b2 A
— biz kW - j-c 6dz + L > C.G(Z'\-Z)' dz
bi lzo.zwxx Q,b“ h * buh 2x* /0-7

—hll —h/i-

(i)
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The equation (11) and (12) are the equilibrium equations
of an orthotropic cylindrical shell in terms of its dis-
placements when the loading is axi-symmetric, Solving these
two equations u and w can be obtained and from there,
thermal stresses can be computed. 1In the following pages
few simple cases of temperature distributions and boundary
conditions will be considered and the corresponding thermal
stress problemswill be solved.

For the thermal stress problem three diffferent
temperature distributions will be considered - they are:

(a) Temperature varying along the thickness

of the shell; T = T(z)
(b) Temperature varying along the generator
T = T(x)

(c) Temperature varying along the generator

and thickness; T = Tl(x).Tz(z)

Attention will be focussed only into simple supported
case where the axial displacements are not prevented.

From equation (10), for axi-symmetrical deformation,

we get,
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Therefore, Nx = constant
For simple supported case Nx at the end is zero
(since, there is no net axial force); thus Nx = 0,

Now, from equation (9) one obtains,

o
_ - b2w h2wxx , | 2
Ux = o-bu * 120. * hbn S’C|69le /e)dz (13)
by

Substituting the expression for Uy from the above
equation into equation (12) and considering no mechanical

load present, we get,

Wxxxx + 40%0xx + 48%w = fced (4)
where,
g 36 [t - b2 ]
82(1202-p) L o b (i)
o = 3 b2
bu (1202 -K?) (o)
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Vﬂz

44 o 1
S»-Ce) = mhz’) [b”l"\ 9. ?_C Q(Z‘FZ/QDAZ
—h,
/2
h_ 2 ¢6 (1rz/m)dz + - (b2
T 2abi ) o (1r2/e) M’“(bno)
-h/,
o h/a
|
« | e (1rzb)dz - oy,h fczedz' ®
~hfa -h/l

The general solution of the equation (14) is given by

_] [B CosVB 1> % + BySindB> +c>t’x]

W =

4 e 8y coslgrix + BasindBinld

+W
P a18)

Where Bl’ B2, B3 and B4 are arbitrary constants which

can be evaluated from boundary conditions; Wp is the

particular solution corresponding to the temperature function.

A few temperature functions and related thermal stress

problems have been considered in Section VII.
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Equations (1l) and (l1l2) are the equilibrium equations
for orthotropic cylindrical shell, developed from general
equilibrium equations (1) given by Love (l). These equations
are rather difficult to handle, except for a few particular
cases of boundary conditions. Apart from this fact, since
the buckling criteria will be established using the strain
energy expression given by equation (28), Section IV, we
will develop simplified set of equilibrium equations, by
setting the first vari;tion of strain energy equal to zero.
As before we will derive the equilibrium equations for
axi-symmetric case and without any mechanical loading.

For cylindrical shell, middle surface strain-displace-

ment relations in axi-symmetrical case can be approximated

by,
Ex = ux
ey = W/
Yey = 0 (18)

Therefore membrane stresses will be given by,

Gx = bulx + bizw/a - G 6,.

Cy = bz Uy + bz wia. — C26m

(Fp) =0 69)
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Where 6,., temperature of the middle surface.
Considering the strain energy expression {J given by
equation (28), Section IV, the first variation éﬂj, because

of variation S and SW is given by,

%‘U‘: I’{ {[bn €x + b1z &y —C|eoh] §ax"\

th [bizex +baey - GO./n] sw/a + [Ci6

-2 bk | 51011.} adxdy
(10)

If the shell segment is limited by x=a, x=b; y=(,

y= ‘5 the integration by parts yields,

P2

x=b
oU = hf [biex + bney ~ oo/ | 51| ady
@, Z=0
¢, b
- f[%f’ bukx ~ 6] Swx| ady
@) *Eo
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P2

+ J [_:123 b (K;)I - @\e')x] s \ijaaj
('P'Z b
) CPJ; Oj L%B bin (K2 )xx — CCIGDII} 50> adxdy

# o ®
+ h J J [bn(@z)x + (Cy), b1z - <C‘_§_°>I]§Eacjzﬁ/
¢ o

¢, b
+ h J j [‘Olzex-l“ bz2 €y - C?-Go/hlé_c%adxé)l ()
e o

For the system to be in equilibrium, the first
variation of potential energy must be zero. Therefore,
both line integral and the surface integral must vanish,

By equating the line integral to zero and replacing %i' %?
etc. by u, w and their derivatives, we obtain the following
natural boundary conditions.

Along the circle x=a, x=b

[bnT,Lx + brw/a - Cleo/k] 50 =0

3 =
[;% biwzx + C‘el—]¢§031 =0

[ 'lb_?f b Wxxx + Cclel)x:\ Sw =0 @2)
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The equilibrium equations are obtained from the
vanishing of surface integral and they are:
3 -
b’i b“ wx;cxjc -+ hblzl’g‘ + hbzz ‘é‘j—z —CCIerx
|

+ Cgeo/o. =o

b sz + bz e/ - (CIQQI /"» =0 (23)

If we integrate the second equilibrium equation, we

get,

Obu -Gx + bizw - aC|eo/h = —K_ 624)

() Simple Supported Case
Considering the first boundary condition of equation
(21), K=0 for simply supported case. Therefore,'i,'(x can

be written as

- EQ.
Uy = =< w + C6s/Hh
x | \ / bn <25)

Substituting this U, in the first equilibrium equation

(23) , and rearranging we get,
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b\‘ Wxxxx -+ [ ba2 - E'Z hw (QGD,& C260 +19|2C 6o
bH O Obll

(26)

If <, is independgnt of space co-ordinate, then we can

write the above equation in the following form

Wxxxx T 4k*w = A (B)xx + A28, (27)

where, -

0htbi bi
A= 12og
h3by)
|2 b
- ¢, - bi2
7 Bhua Ry (22)

General solution of equation (27) is given by
-Kx
w= e  [BCoskx + BySinkx | + X% [ByCoskx
+ B4 Sin Kz] +WP (29

where, Bl' Bz, B3 and B4 are arbitrary constants to

be evaluated from boundary conditions.,
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We note here, in both the cases where the temperature
1s function of x or z alone, the term A(® D) xx

vanishes. Therefore equation reduces to

Wxxxx + 4kfw = A260 Cz25)

(B) Fixed End Case:

For fixed end case the following condition is to be

satisfied,
{ 4
fexdr. = Jaxdx =0 (31)
[»] [

From the equation (24) we have

abl\ux + bz — QC|90/h = K

Where K is a constant and can be evaluated from the
boundary condition (31). Substituting the value of ﬁx

from equation (24) into (23), we get,

4. — _Ki2bn
wIIXX + 4K w = A'Ce')xx + Azeo a?.bﬁh’a. (32)

where K, Ay and Az are given by the equation (28).
If the temperature distribution is a function of x or z

alone, the equation (32) reduces to,
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- K\2bnn
N + 4k%w = A,06, - Klcbr
LLLX 2% 26T e (33)

Particular cases of temperature distribution and re-

lated thermal stress problem will be discussed in Section

VII,

V.4 Thermal Stresses in a Conical Shell-

For a conical shell strain-displacement relations, as

given by equation (36) in Section IV, are as follows:

D ~ Sin ok x xtond& xX x2Sin%d
ny - _:l'. + uéf _ ’12 _2zWy _ 2wzxy 5,
xXsind X’ 225n0 xXsSina (34)

Substituting these strains in stress-strain relation

(7) and considering an axi-symmetrical case, we get,

- Uy = oW wWx -
& = bn(Rx-zWxx) + b|2<§ s z2)-c 6

= Ux - T _ W 0 _
6y = biz (Uz - 200xx) +bea(Z - 2 _ Wz3)) -G

T%j =0
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Substituting equation (35) into (3) and noting that

r, =o0 and r, = Xtan®, we get,

Ng = "“{_bnuz + b'?-c_; +bi -} —_"!3_____<,b“wx’t

Xtrond I2x tanad
W/
_bl').().)x/x> - fC|G<I+;EZEmo<) dz
—bh/2
hf2.
= U w W - d
Ny h [bnuz + b2z 2+ b22x+ano( fc,_e z
—h/2
r“!y = r*yx = hAxy = hAyx.z O
3 —
My = L builx 4+ b2k 4 bz ]
2% tanX =< ~tontt
hf2
- N h® — gC 6e(\+2___
[bn Wx= + biz x/x-_l e 6 ( E— dz
A
"\3 L"/2.
My = —H Cb‘?-wxr + b2z wx/x) - fczezdz
=h/y (3e)
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For conical shell equation (4) reduces to,

gx (xNx) - Ny =0 @7
2 (x@x) - M -0 (38)
2% tana

2 (ZM5) - My —xQx =0 (39

From (38) to (39), one obtains

32

’axlcxMﬂ—:%'xM) -2 o=o

tan® (40)
Substituting the values of Mx, My, Ny and Nx in
the equation (37) and (40), we get the following differ-

ential equations:

3
1_ b|\;k x] WxxxX - izbnh?’]wxxx + [ b2 lh®

3 3
brzh ﬂ\wxz _ [ 2byj2 -t baz h ] Wx +
12Zxtanol |2 tard |2x2
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Wexx [_El‘.'_h.B ] + Dxx [h3b'2 - Ux [Zb'th

12tand |2'xt0m0( 1222 tonol
+ biz h ] + I [2b|2h3 - b22h J + F(6) =0
toand ' 1273 tana xtond (4y)

[hbul_.l Uzx + [hbu] Ux —['n_bu]a - [l‘.}_‘?_'_' Wxxx
x* |2tand

3
[R*bi2 ]wxx—[ﬁﬁh Wx - [hbzz 1w+Fz(e):o
12z fandl 12 tand Ttand (a2)

where,

axt
—k/z

h/2

+ [C,_@Zdz

"‘/z.
h/2

t fcze dz
tano!
-h/v " CL"B)

b2
R = -2 (C\xez (1+2/xrona ) dz
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h/a W,

[:2(9) — -—% DCCIG(H'Z/'JC-I-QY\OO dz + C26dz (44)

—h/L -—h/z_

Equations (41) and (42) are frightfully complicated
and no effort will be made to solve them. In the following
pages simpler differential equations defining displacements
of conical shell will be developed. Instead of deriving
differential equation for axi-symmetric case, a general
case of deformation will be considered with arbitrary load
and temperature distribution. The equation will be derived
following Hoff's (18)work. Hoff derived the equation for
isotropic case subjected to mechanical loading. In the
present case thermal loading will be also present and

shell material will be orthotropic.

Derivation of Simplified Differential Equation
for Conical Shell

The present derivation will be restricted to small
cone angle and truncated cone,
Considering small cone angle the membrane strain-dis-

placement relations can be written as,
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€x = Ux
Ry = C’G_y + WCosa) /x5in o

Exy = Vx + U.)//‘JCSMO(

@s)
The curvature can be written as
Ky = — Wxx
Ky = = Wwyy/x*sina
Kxj = -2 Wxy /’JCS(M){ (46)

We note equations (45) and (46) differ considerably from
other previous strain-displacement and curvature-displace-
ment relations. But the effect of additional terms are
appreciable when cone angle is not small.

The middle surface stresses will be given by,

6x = buux + bp C’EJ +wcosa)/xsina ~-C\8

Gy = bizlx + bn(ﬁ) + weosa)/xsind ~C26

Txy = bé& C'\jL + UJ /1S|'Y\ 0() (4_,)
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The total potential energy of an orthotropic shell

is given by

Vo= U+ C48)

where (J is the strain energy and ) is potential energy
due to external loading.

The strain energy expression as given by equation (28),
Section IV, can be separated into three parts Um, Up , Us,

where,

|
Um = 3 J’f[bnexl+ b22ey% + bes e;:, +2b,2exej] hABdxdy

Up = 7'\_—4 fj' [bu Ko+ b’LZK)/Z-!' bee szf +2bj2 KxKy] h?’ABcliy

Ue = - ({[CC\QI +C—)_C?y)e° + CC[KL +C7_Ky)9|] ABAIQ.IJ

(49)
For a cone, A =1 and B = X sing
The condition of equilibrium will be established by
setting the first variation of the total potential energy
equal to zero. In the derivation it will be assumed that
the temperature distribution is independant of radial

co-ordinate and therefore, 9‘ =0.
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The change in membrane and thermal energy o©(Um "’Ua}

caused by variation $U, §v and Sw can be written as,

é(,Um"' Ue) = kff [61 SUx + (O‘y/zsincO é‘\—))
+ <6y /xs;noDcosot Sw + Cxy §T,

+ (?x) /‘zS{nol) 5&)] A Sind chly C5°)

If the shell segment is limited by the line x=a, x=b and,

y= f,y= ®,then integration by parts yields,

‘PZ ‘r.:\‘.)
éCU'm-rUg) = hsina | CG:;%E. + ij éﬁ)l Ay
®; T=00

vw= P2
th f(@ 5 + Tey ST \3=‘P| 4= -
b @ |
-k f{{[(xsmo{ 6x)x + (’Czj}j] S+ [(@)y
o

+ (XSna Ty )y ]8T + Oy Cesolow } dydx

Similarly, for éUb one obtains,
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P,
A=
éUb: E f {E‘s"hdb\\ wWxx <+ bi?. b)yy]é&)z} y

12 xSun
|
@, %b
4b
f { { (sinabiiomi), 1 (B2 13,y) + 4088 waplsnty,
& =0
b
v=,
v (e
23sinl xS
a 2=
({t
22 bi
_ Wyyy + Wrxxy ow dx
3530l ZSinal }
a xXoom 9=9)
b
y=@
- f {4&;6 Wy SC\):} dx
N XSin o Y=Y,
b %,
v [ [ s b nn + (52w
o (‘F|

b
+ ——-——4 \‘6 Wxxyy + bzz.\ Wyyyy + b%_ﬁwxzyy}éa)dzdj}

(52)
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To find the ${2 , let us consider that the surface loads
X, ¥, Z force per unit area, are acting in axial, circum-
ferential and radial directions.

Therefore the change in potential energy 5L of these

loads during virtual displacements is

b ¢

éQ = - j} CX SW + Yév +Z§w>‘.\:s{nd dydx C53>
o’ G,

For the system to be in équilibrium, the fi?st variation
of potential energy must be zero. One of the requirements
for the equilibrium is, therefore, the vanishing of the
line integrals. From there we obtain the following natural

boundary conditions.

Along the circle x=a and x=b

{bu Ux + bz (Vy + wCosa) /xsindk —C.S} s =0
i’\—)x + Wy /:zsfno(‘g oV =0
{xﬁﬂdbﬂwxxﬁ-hzwwdxandgéﬁk =0

; bi2 4beé 3 -
SL@cs nol bn&)xx)x + (ﬁndwyy)x-i- _x_ﬁs.,no(wxyy Sw=o0 o
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Along the generator y = ¥ andy = &,

{ biz e + b2z (Dy + wCosat)/xsina - 0293 $G =0
i’\—)x +'ﬂ)/'x$\‘no(} Sa.=0

{ b2z _ wyyy + DIZOOXXY  4pe (ww/ﬁf“"‘>z}5w=0
x3 Sindal XSinat

{ b2z Wyy + biz Wxx Swy = O

(54 b)

The second condition for equilibrium will be that
the sum of terms under the surface integral which are
multiplied by S(W,Uw)must vanish separately. From there,

the following three equilibrium equations are obtained.

(xeindCx ), + @)y + xsind(X/n) =0

(6)y + (xsina Txy) x + xS (¥/w) =0

bee
bl 2 Sinol Wxx + EE-_ti.__> w biz_
( " >II ( XS'nd Yyt (xs\‘nd ”)xz

b2 12 .
+ - = - (12 =
STndo wyyy)/ hl@coso( ( %/h-;) XSinol =0
¢s5)
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The last of equation (55) can be written as,

_ 12 . 122 e s
G, (W) o Cosdk xsin Oy  — ( D >’x_z$m"d =0
(56)

where,

Gzcw) = ZanO(C’xS\‘nci b ()OJOC)xx + (biz+4 beé)d)zxy)l

+ xSinol [ br2 ww) +
~c a XX

b’Z?. N
XSinot Tsoan 00 1))

Substituting the stress-displacement relations into

the first of two equilibrium equations, we get,

{’J:Sinot [bn Ux + b2 (Vy + weosw)/xsinat - €O }x

+ (_b(,é (’I_),; + ELJ/IS\‘nOO]» + ISMQ(-X/V\) =0 58
58

{ b2 Bz + baz (Ty 4 ocos) /7esing - 28],

t [bec (P + a)’/‘xsfnd)]x +xsmo (Y/n) =0
(s9)
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From equation (59)

Iy — | b22 X Sind bege )x
Ugy= -4 =~ VUyy t+ (xSind bee Ly
7 (_bnz-i-bsa) xXSnA

- C;_G) b22Cc$0( ().)j + xSmO( (Y/h)] (60)

I.Smd
From equation (58)
- | . -

Vy = = {b\\ ‘JCSlno(Lly_) + bm_COSo(LOx
> (br2+bes) G *

- (xsmaC e bee + xsing X h}

(xsiracie)e +bee [ 2 ] /
(e

Equations (58) and (59) are first differentiated with
respect to y, multiplied by xsin and then differentiated
with respect to x. 1In the expressions thus obtained, the
values of ﬁxy and axy are substituted from equations (60)
and (61). After re-arrangement these equations can be

written as,

G ,(v) = Cosd - baaby (xSina Wxy )x (=sn)
iz +bes)
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_ besb22
(biz + bes)

wygj + bIQ C’IS{Y’\O{ wxj )X CIS\‘ﬂd>]

— xXSino bi , 2, . | bee C2Oyyy
_—— X 10 Y/h)x t —
(biz + bes) Y’ sinot (x'sintal / ) :\I Coiz+ bee)

+ x*sind (Y/h)yy + (x*sin?x X)')I (xsind) /h

+ Isl.nd [C‘ -f— bllCz ] xs. N
Cbiz+ bee) [ "m0 (esing e)'}x]x

(62)
and, _
G (W) = -Coso! ib‘zb“’ xsina [xsina (xsinawixdx ],
' (bn.“‘ bee)
-b222Sino Wyux } - bizbz2 O
JY _b66+b'| CosX X Sind Wxyy
b22.C| \ . b .
- C X SndC, © Sing) — 222 X
biz+bee Z>C o )'>'>x(’° "0 (bee+bid)
X2 Sin%d X + E'LS"""‘ bes *SinolC\ O X-S-'nu(} xSind
( 3 33) Cbéei-bm.)c e )1 x

‘ s -
+(7f_51‘_°‘ YJ’) xsing - 266X X sing (Z2Ein’d X)z]
h x bée+bi2 x

&2)
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where, the operator Gi(z) will be defined as,

G‘CZ> = AS'nX _b_“__bé_s. i KSinX [x Sin X CISIY\(XZQ(D,;]%
biz + bee %)X

+ XSiny [ bée +bib22
biz + bee

- (bz+ bee)](xs.‘nd Zyy ")z

+ bee b2z
biz + bee

Zyyyy )

Now if the operator Gl is applied to each term of equation
(56) , then with the help of equations (62) and (63), one

arrives at the following differential equation,

|2x. \ bib22 —-bi2 \
G G(v)) - Cos'wl S\ nak <O‘D|‘2 n bee)) bee {'xsmo‘ [xs nd

(’LS\ﬂd UOI)I ]'I} -f' __2_ Cos & _b_ee._ XS'nd {’xs;nd
> ¢ +biz

{):S\‘no( ('X‘ZS\‘Y\."Q( X33>x + b22 by b\2> {ISmo(C’x Sifel
bee+oiz

}KA)I]I, ~ bo2 x%5/n2 %35 } - -‘h%- H, [zzzs‘.nzd]
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- 12 coey 3 Crbrzbee XSina § XSind {’)cs(nol
h3 Cb\')_-\-bss)

a{'xs{mx ('xs{no()xtlx }1} + X Sng {Cz by b2z —br{’
x

(b|7_+ bee)

b2z b2 . .
+ C [(beeﬂon) - bzz] }XT():SWO( Byy )y XS0l }

X
bee b2
(b2 +bes) C2Ovyvy 3
+ % H‘ CC;_ GIS\WAO() (65‘)

Equation (65) is a differential equation in w alone.
This equation may be solved for w and the expression for w
thus obtained may be substituted into the equations (63)
and (64) to get u and V.

For axi-symmetrical temperature distribution without

any mechanical load, equations (64) and (65) becomes,

) = - bebée oy xsina [xs; Sna ()
G, (™ (oo tvee) o5 [ ina (xSn ‘L)I]I

+ {{ xsina bee (xsina C, e)x]xxs.‘nu}xxs.‘no\

(bee +bi2) (¢6)
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and

N
G ~ 122 o costix (Prbaz —bi3 ) bee .
&1(6s0) W oine Cbiz + bee) X {xsmd %

[XS\'Y\G (’Isl‘nd\wx)x] } +_Eﬁé_—— CosX [.Czbll—CﬂDl;:] X
ks (_bse-»b\:Dh"

£ Sinok %xs“no( {'x Sind! [‘JC S'n X CIS\‘nO( ek]x}x}x
(e7)

where Gl(z) and Gz(z) have now been reduced to,

G, (2) = *sind bu bee {xsl‘no( xSinal (Zsinat Zx)
| (bo1z+bee) L x]z}z (&)

GZCZ) = bll X Sin & (’I.Zxx)x,: Cég)

For isotropic case the equation (67) reduces that
given by Hoff and Singer (19), except for G,(z). The reason
for that is a more accurate expression for curvature they
used in their work.

Equations (66) and (67) can be simplified and written

as

bin (2 0x) .= —bi2cott Wx + C(x@Dx (7o)
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and

Ga(w) = 2 cosiy (b“b“
h* bu

—b?z)w

+ 2 Cosasina [C‘ by — Czblz} X6 =0
h=
ou (71)

Equation (71) can be written in the following form,

2 + /
KEPWxrxx + 2% WOxxx — Blos = -C'xO (72)
where,
2.
/4= 12 cos (B22bi-biz)
b||5fhzo(
Cu - l‘,%z Cos o CC.bn -C'zblz)anO(/bt,T (73)

It may be convenient at this stage to use non-dimensional

form of diplacements and distance (See Figure 5.2).

Let,
X = xm
W = U/a
n = Yo
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Then equation (72) can be written as,

2

X Wxzxz +2%Wzzz - BY O = czo 74)
where

54 - aLB/"'

¢ = ax’

&)

For homogeneous part of the equation (74), an
approximate solution in the form of asymptotic expansion

may be obtained by the procedure suggested by Love(l).

Let,
- J? 1 | -3/ -5/4
We = € Cz4+az/4+ bz 41—c2 +)
(76)
where,
Z =mX

Substituting this equation (74) and setting right

hand side of the equation equals to zero, we get.

7/ -3
mt ' { 2"t (a7 4 (b-8a-96)Z 4 4

(c-12b + |_%_a +é)z-5/‘* + (~l6c+129 _ 5la—2%' ){7/‘_’,‘_.,..
2
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- - -5/
47 L (40 -2 H# 4+ (ab-180-13)277*

-7/4
+ (4¢c-30b —330+2/2)2 '+ }

\F Ve -l -3 -5,
—B4e CZ 4—}-&,2 + bz 4+CZ /4>=O

R

(78)

Equating co-efficients of 2_1/4 to zero, one obtains,
m4_ 16 B4 = o
m, .., = 2B,-2B, 2Bi, -28L

Equating the coefficients of z >/4 Z_5/4, 2~ 7/4

’

respectively to zero, we get
Q= -3/
b = Céﬂoya__-z>/q2
C = 69b/y -840 - 231/1¢ (79)

For a thin shell three or four terms will be good
enough. The complementary solution of the equation after

little manipulation can be written in the form,

wC= Q!'—]"" Rsz +R3L3+ R4L4_
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2BJX Y -1 - -
L S [Mg b €2

2B @_5)7_ +(ZB)?’ +
2812 -y - -3/ ~5/4
L, = € [i4—-g-i4+bx4ci+.]
2B (2B)* (28)3

_ Y

R (2BNZE  -34T) + cz \FY
— 6s (2 T ol x -
C2B)* 2 Fam? cos (2B -3,T)

+ .-

l
Ly = 24 sin(280% +T4) + QI *sin (281 -T4)

—b-—-z- 3/45\‘n (2 BE - 3/ 1‘") + Ci‘SA Cos@-Bﬁ - 5'/ ‘ﬂ‘)
CzBDz 4 Znga 4

-+

(g

For the particular integral of equation (74), we note’
that if the temperature distribution can be represented by

a polynomial, the particular integral may be obtained
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easily by the method of undetermined co-efficients.

The arbitrary constants Rl'RZ’R3 and R4 « can be
evaluated from boundary conditions. Once w is determined,
U can be determined from equation (70). For simple

supported case equation (70) can be written as,

Uz = - 22 cotx 5 + ©Q(EO 4+ g (82)

From boundary condition (54a) in case of simple support

where there is no axial restraints,

G=0° (83)

The different stress can then be written as,

6;(:0

6:.@_Cf0( bZ—E?_-?; & bl_Z_ —C]
) io <2 bn>+ [bnc‘z

625 =0
(84)
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We note 6}=o.is a consequence of approximate nature of

middle surface strain assumed.

For the fixed end case, the boundary conditions will

be,

w=0 }
Wx =0 ot T=4 , 1+ (55)

Also, there will be another boundary condition

4L [+L
Cxdx = D_z dx = O
(36)

From equation (86) the value of G is found to be

I+L
G = | Eﬂg Cot ! £§ - Elfa <ix_
Qg(wl) b x b
I
(87)
and the axial stress will be given by
6;i - (3 b\\ CQS)

X
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SECTION VI

THERMAL BUCKLING OF SHELLS

VI.1l Introduction

The theory of buckling deals mainly with the conditions
under which the equilibrium ceases to be stable. A class
" of unbuckled configuration, corresponding to a range of
values of a real parameter p is first considered. This p
may be a mechanical load or a thermal load. For each value
of p in the range of interest there corresponds a single
configuration in class ' . In the classical problem of
buckling, the configuration in class [° is stable when p is
small. But when p is increased to a certain critical value,
configuration in class | ceases to be stable. The problem

is to determine the critical value of p.

VI.1l.1l Energy Theory of Buckling

The energy theory of bgckling propounded by Bryan (20)
was based on the law that a static conservative system is
in a state of stable equilibrium, if and only if, the
value of potential energy is at a relative minimum.
According to the principle of virtual work, for any
equilibrium condition, the first variation of potential
energy'sv'vanishes. If in addition, the second variation

of potential energy is positive definite, the equilibrium
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is stable(l). At the buckling loadq<§afordinarily changes
its character from positive definiteness to negative definite-
ness, negative semi-definiteness or indefiniteness. Thus
it may be anticipated that é%/ is positive semi-definite when
the buckling load is reached. From there it follows, that
during buckling, there exists non-zero virtual displacements
for which 61|/=0

The total potential energy of a loaded structural shell
is the sum of strain energy and potential energy due to
external load. Since we are only concerned with thermal
buckling, we will consider strain energy expression as
total potential energy expression. In the following para-
graph, an expression for second variation of strain energy
which is applicable for buckling analysis of shells will be
developed. In the development of second variation expression,
non-linear stretching of the middle surface will be con-
sidered. Since it will be impractical to consider all the
non-linear terms, certain assumptions will be made to
simplify the second variation expression.

The strain energy expression for an orthotropic shell

is given by eqguation (29), Section IV,

U = Ljn1 + Kj£ +’1Jé
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where,

- |
Um- EJ[ [blle% + b?.Qe;- 'f'beée%) +’2b|7_eace)]"\Aded)/
Q)

U, = 2'—4H[ bu K + bee Ky + b2z K5 + 212 Keky |RABAdy
()
Ue = “JJ[(C‘ex + Cze))eo + <C|K1+C2K))e|] AB&XA)'
where, @
h/2

h/g_
B, = feéz 6 = [920‘1 @

“Ya —hy,

A look at equation (26) of Section IV reveals that

the middle surface strains can be written in the following

form:
2
— Wy
e, = ejc_ + —
* 2 A%
2
= o4
_ &+ —=
= PR
= Wx Wy
e,, = €
xy = Cxyt — (5
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where éx’ éy and éxy are linear functions of displacement

components u,v, w and their derivatives. The curvature
Kx’ Ky and ny are linear functions of the derivatives
of w.

In order to determine the second variation of strain
energy, virtual increments are given to displacement com-
ponents. The terms, which will be quadratic in these
virtual displacements, will constitute the second variation.

Thus the change in potential energy can be written as

AU=§U+2118U+"" ()

The second variation,

éQU = jf{ b (é éx)?-‘}‘ b22 (é éj)z‘i‘ bee (é éZ)>2+ 2bi2 (é é‘x.)

(5&y) + ( bi€x + bi2 e)) (éwx) + (bi2& + bzz?,}(zsz

= x S5W = -
+beg By 2220 17 (b 88, +by sey)(éf—;) wx +

(blz 3€x + b2 ééy )Ny + bee S€x (wxéwy

wyéwg]}kwaxa,

+l‘_2j/ [ b2z (3K7)2+ bes (ény)2+ bll(éKz)z
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+ 2bn (éKx)(éKy}] K ABdxdy

-1 [ce, (i\wﬂ + G6, CéUM | ABazdy ©

The above expressions are obtained from the consid-
eration that the prebuckling displacements obey the linear
elasticity law. Thus the squares and products of pre-
buckling rotations have been neglected, since they are
very small compared to prebuckling elongation and shear.

Considering the second variation of membrane energy,
the terms given in the bracket [ ], which contains pre-
buckling rotations, will vanish if there is no bending
present in the pre-buckling configuration. 1In general, for
long cylinders, the individual terms in the bracket [ ] are
small if compared to other terms in the second variation
expression, but may not be small enough that they can be
neglected. However their net effect on the entire surface

of the shell is small.

Buckling Analysis

For buckling analysis e/ ey and exy are to be expressed
in terms of u,v, w and their derivatives. Séx,éé;,éu&‘§Kxetc.
can be expressed in terms of u',v', w' and their derivatives,

where u',v' and w' are buckling displacements. Now certain
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buckling displacement functions are to be assumed. For
simple supported case, the displacement function can be

approximated by,

N
W = Cosmy Z Un Cos%z

n=|

N

V' = Sia my Z\/n Sin NIt x
- L
n=|

N
W' = Cos my Z Wn Sin niix (8)
n=j '8

The vanishing of the first variation of total potential
energy yields three equilibrium equations. From these
three equilibrium equations, after certain manipulations,
Un and Vn can be expressed in terms of Wn' At this stage
u',v' and w' are substituted in the second variation ex-
pression.

Also u,v, w etc., as calculated in terms of © from
prebuckling equilibrium equation, are substituted in the
expression for é&l},

Thus after integration we obtain,
N

N

éQU = Z Apn WPWn @)
P:I n=1\

where, Apn contains O terms.
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The condition for the limit of positive definiteness
of the quadratic form is that the determinant of the
co-efficients be equal to zero. Therefore, the buckling
problem reduces to an eigen value problem. The value
of N depends upon the accuracy desired and is to be de-
termined by trial. For most cases results converge very
rapidly.

There may be another way of looking at the buckling
problem from energy considerations. One considers first
the change in potential energyAUfrom a peculiar state of
equilibrium which exists at the incipience of buckling.
For equilibrium, the first variation of potential energy
must be zero. If the first variation of AU is equated to
zero, then a condition for which buckling configuration is
an equilibrium configuration is obtained. This condition
in turn indicates that the prebuckling configuration is a
neutral equilibrium. The condition for buckling is obtained
in the following way. The change in potential energy is
expressed in terms of Un’ Vn and Wn by substituting the
assumed form of buckling displacements given by equation(8).
The integration is carried out to arrive at an algebraic
expression involving unknown coefficients Un, Vn and Wn‘
The requirement of zero variation of the integration is

hence replaced by minimization with respect to U,r Vg and



W of the algebraic expression. This leads to a set of
simultaneous equations the number of which depends upon N.
Non-trivial solutions for Un, Vn and Wn exist, if the
determinant of the co-efficients in the above mentioned
equations is zero. N can be increased and hence the order
of determinant, until the satisfactory convergence is

achieved.

VI.2 Thermal Buckling of Cylindrical Shell

Considerable work has been done in the field of thermal
buckling of isotropic shells. Hoff(21)and Zuk(22)considered
the case of uniform temperature rise and solved the
buckling problem of a cylindrical shell which is restrained
circumferentially but free from constraints in axial direc-
tion. The case of cylindrical shells subjected to axial
temperature distribution has been solved by Sunakawa(23).
The buckling of cylindrical shells heated along an,axial
strip has been studied in a series of reports (24-25).

In this study instability of orthotropic shells sub-
jected to a temperature distribution will be considered.
Investigation will be made for two types of boundary con-
ditions - simple supported and fixed end.

Temperature distributions for which buckling criteria

will be investigated are assumed to be axi-symmetric. The

temperature will be assumed to vary axially or radially.
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The buckling criteria will be determined by enforcing
the condition that the change of potential energy during
buckling is minimum. Neglecting the higher order terms,

the change in potential energy during buckling can be

written as,

2

m_{
AU = f [ [ b () + b (222)° 4 bee (e %)

+ 22 (Ux)<u’;w )} ho.clxciy

2 ¢

N ZLO/O/ [Nx <031>2+ Ny (g_g)ﬁ] adxdy
+ o/jQ“ b Ux + bia (l’gﬁ)] W B

+ bee ['Ux-l- %J(%@l)} l’lO.ClIA)

21T |
| 2
T o4 f/ [b“ Wxx + b2z Wyy +4bee “-’Q’zﬁ
o  © a2
+ 2bj2 Wxx ony]}’?QAxA)/
a2 (o)
where,
Nx= (b8 + blzéy>lﬂ -C6,

N) = (b|2§x t+ bZZ-é))h —Czeo an
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ey and ey indicate middle surface strain. The bar over

the quantities indicates gquantities prior to buckling. We

note that expression AU is quadratic in terms of displacements.
The absence of the first order terms lie in the fact that
pre-buckling configuration is an equilibrium configuration.

We also note AU contains pre-buckling rotations.

(A) Simple Supported Case

At this stage we assume the following functions for

N
U= cosmy z Un Cos n{rz

n=|

N
v = 5W1wy Zz \[\ Sin N
n=1 1§

N
W = Cosmy Z W, Sin nTrx
L

Nz

where, m is an integer. Such a solution describes a
buckling mode with m circumferential lobes.

Substituting the displacement functions in change 6f
potential energy AUand integrating, the following algebraic

expression which involves U, Vn and W is obtained.

N
AU = Z i [ %%ﬁ\/n\/n, m* o+ 25_'.1;. nnér® U e
n'= =

Lt
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+EWan/ + Qa‘m\/nwn’ + EGG hhrr (VA YA
202 az 212

+ B8 2 Uy Uy - Bet mat Vo Ups = 22 mam Uy Vi

at

_ bz , 1 h n 22 _4
22 n Uy Wi :'g_La én + [bn W,,wn,n;,;r +

4b6G ™m nn1T2 V\/“W /7 + b22 m4 Wn Wn' + blz hzmlﬂzwnwr{]
2022 204

clnkPa g™ 4 g, rRhT \—\, W, W, + nn’bun3 l’LO-KHz
24 ™Y 212

UnWas + ;L;memn‘zkn' a2V Wer + hen'bn .

n

T2 K H, W, Wn, + bes ﬁm_’LK Hoho W, U, i b“‘
“'

20.% ne 2ol

’LT\. \/r\ Wn'K Hn?_ \na :k

03)
where,
_ o b2z ba;.
RZ - ( o} o-:l_bH) QL})
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2 . 0 - KCos [K-AT
Hp= =) (0 {B.a“{w—m]s\nrx-m <cos 200
|

™ (= 2 {K*+ (K-ab*}

N Ble—KQ { [K+AL] S(n[K+AL]Q - KGs[k+ AL]Q}
2 k2 ¢+ (K+ai)?}

+ B, " {—KS\'n [k-ai]l - [k-ai]Ces [K-A'JQ}
2f ks (a0}

+ B e‘KQ { -K$in [KraiJl = [k+al] Cos[K+A'L]Q}
2

2 fk? 4 (& +an?]

+ B, ekl {[K-A\'.]S.-n (k-ai]l +|<c°s[K_A(_'JQz‘

23 k24 (k-a)*}

B, okt { [k+al]Sin[k+aill +KCos[K1—A.‘,_]Qj

2 { K>+ (k+ai)*]

+ B, & [ Kksin [k-ailt- [K—AL]COS[K‘ACJlg

R K2+ Ck-aiy}

+ By ekt { Ksin [k+ atll — [(kK+ai]Gs [K+A(JQ}
2 { K+ (K+ad)? ]
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B, K B, K + Ba(k-aD
+ + =, —
2§ K%+ (k-a1)?} 2§ K24+ (k+all}  2%k24 CK-AL)}

Bz(K'i“AL‘) _ BSK ] B3K
2§ K24 (k+ 207 25K+ (K-al)*} 2 Kor (craif]

Bq (K=20) +  Balktai)

2{}<2+CK—A'L)2} 2{\<2+ Q<+Ac)} as)
AL = (V-n) T/ (e
A, = (nim)TAH A7)
o = | For n’=n Q8)
" 2o For n' #n %)

- xt L)Si - KCos (k—-aA{
an - Z _CBI_'_BDie [(K—AL)S;hCK—A.C)f KCos (k-ai)(]
nf 2 (K*+ (k-ab)?]

L=

- éKl [(k+al)Sin (k+ AL - KCos (k+ai) L]

2 [k2+ (k+ai)?]

e Kt [-kSin (al-K) L = (al-K)Cos(ai-¥) 1]
2[k?*+ (Al-Kk)?]

+ (B2-B)) {
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K [=KSin (alvK)L — (Al+K)Cos (Al+K)L ]
2 [k*+ (al+k)?]

+(Bs +B4) {e“‘ [Ksin (Al=K)L - (ai-K)Cos (ai-KOL]
2 [K*+ (al-k)?)

L X [KSin (al+ KL= (Al+K) CosCal+ KL
20K+ (Al+k)*)

+ (B4-B3) { et [(k=al) sin (k-a)L + KCos Ck-aid( ]
2 [k2 + (k-a0)?]

_ X LCk+ai) Sin (K+ai)l + Keos (K +ai)t] }
2 [ K24 (K-rAL)’-]

- K
+(Bi+B { a + }
+82) 2 [ K%+ (k-a)?] 2(K2+ (K+aD)?]
aAl-K AL+ K
+ (B.-8B { +
(Ba-8) 2[4 Cal-K0*]  2[k2+ cal+ K)"]}
+ CB +B { AL~K + AL+ K
* 43 2 [Kr 4 (at-r)*] 2[k*+ (al+k)?)

K
- (8 -B ) { K _
A 2 [k>+ CK"AQzl 2 [K’--\—(K—mc)z] }}

(20
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Minimizing the change in the potential energy expression

given by equation (13) with respect to Up, Vp and Wp; i.e

by setting AU - YY) - 24U =0
auP avp QWP ?

ZN (A Un + B Vi + Cyw,) =0

n=1,2,

— e— e v e e e e e e e

N

Z (A:'\N Un + Br'w\/h + CV:NWV\) =0

n=42

N

Z (A’zm Un + Bin Vi + C:I Wn)=o

n=1\,2

— — —— e ere— — —— m— ——— . e —

N

B ]

Z (A’anUn + B:\an + C-:-\N \/\/n):O

f\.:h?.

N
Z ( A U+ B Vo + c: W,) =0
n=\,2

(21)
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where,

l biumhp <p 2 ¢p
Aop = 2 oh + B Sn
\ = — [ beemnt bi2 mﬁ“’) P
iy = - (e s gy
' _ bant (e _ bunpt* nh o+ bese m>K wP
Crp =~ =07 on - pPter Zpow
2 |
AnP = BPn
2 b2z m® (n bee npT: (n
Bnp o ép TE p
Ci b22am én bz nm K H; _ bee mpmK Hzp
P o p ol n oLz n
3 _
Anp = CPn
B3r\P = C%h
2
c3, = b2z gn < bu P2t 4 bes ml:ETT
P a P & oot
bazm* 4+ bz o2 b2 P> h* gn
ot o*e? o~z 2 P
nbreTk pbzwk WP
+ 222 DM, 202K W, + Y
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Y = Co-efficient of W _ in aawp (sznwn,mzm H:f,)/ztmlo}. (31

It may be noted that the term H; takes care of pre-buckling
rotation. Settingkﬂ:O,a buckling criteria, that does not
consider pre-buckling rotation, can be obtained.

Neglecting the effect of pre-buckling rotation, when
N=2, the buckling temperature can be obtained from the

following equation
2

The constants B, C and K will be given by the

following equations
B= (GG} -GLGE) 433 G3)
= Gl (cha% + ¢ ot - o+ D3an)
v G (G A55-C a2 -3 a3 —p3 a3
+ Git (€2, O7 + ¢, 43 - ¢ adr-Dia%
+ Gni (C:\ Ai? - C|zz Aglz_ Ciz Aii"' D, Aif) G4

k= (LAl - ¢ o) -cLa2 + D} Al 3 —p3 423

(] 21 2
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+ C2, (C A+ Cp A n%: - A23+D3 2 )
* C:z (_ C\y B3 - CHAZZ‘?‘ DEa% - D2 A% )
3 2
D) (Cuall + C a%2- c5a32 + DR O3S

|
+ D;, (-C1 A% -Clad? ychal2-pias

as)
where,

n (Y“ ') /G Ge)
= (Y;f) /6 )
Y“")/e (3@)

= (Ynz)/e (9

£§fls a fourth order determinant obtained from basic
determinant (Equation 22) by eliminating the last two
columns and eliminating rows containing elements R?n_
and R%, .

D} - C3 -Y - nbpTK HY - pbawK H:‘a- (40)
n np oLz P al*
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If the effect of pre-buckling rotation is neglected,
then because of the presence of Kronecker delta in the
co-efficients of Un' Vn etc., it is possible to express

the buckling criteria in the following form:

tr, + 8! S5 5; .-
h tR,+ 52 ST -
=0 @an
s3 53 trR,+S3 -
where,
_ /a2 T _ =2 Z 2gl
Rn_ = < Ann blzbazsleﬂ : Bhn b—_'zc:,_zﬁ_ - B:m '
bizb22 mnaT Vv m? \ 3
(42)
6=Vt (43)

n gy 6
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When the temperature distribution is symmetrical about
the mid-plane of the shell, the buckling occurs either in
a symmetric or an anti-symmetric pattern. The condition

for symmetric buckling can be obtained from the following

determinant:
tR +¢! Sk S .. S,
3 n-2
5'3 tRy+ % Sg¢ - Sp
g5 Sz RS - =0 (4¢)
S, "2 - tR,S7

The value n in the above determinant is to be selected

by trial until the desired accuracy in the result is obtained.

(B) Fixed End Case
For fixed end condition the following displacement

pattern can be assumed.

W= Sinmy i Un Sin Q_Inq- x
n=|

N
Vv = Cosmy Z \/n CI——CoS 7-_'.”_“'1)
=1 L
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s Sty 3, (e o227 wr
=1

Such displacement functions gsatisfy the forced

boundary conditions for fixed end. These conditions are:

, =0 @ x=0 om:lx:Q

Wy =0 ® ==0 ond x=¢

Substituting the displacement function in change of
potential energy,AU, during buckling and integrating, we

obtain,

N N
AU:Z Z { %llmi \/h\/n/ + 2nn’frzb_}tlz UnUy
n=

P =l

+ szW W, ~ 2b22 4V, n,+2nnwlbee YA
20> 2.0* 0t

b“’ m* UnUp/ 4 2 bee mn V., Un +2n1Tmb'zUV
202 oY} ol

- 250 ux W U] e G

al 2 n

R A A

+ 8.b_€_’.€l mzn.'ﬂ‘\'fzwan’ + b—'z—% m4Wan' + 4b—'2- nt
ot 2ot o
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2 2 y stﬂQa b2
Ml Waner | o0 80, + (822 WoWnr + B2 w

MoV - -b-z—_i?:m Vn_Wn’} LiQO. + b2z m4 h3 1o, .
o} z o4 24

WnWyps 4 Zb_i‘_z Knn'm3ha \1; UnWn’ — %i mha n T3/ W

N,
K H,

n’

” "
+ %{ hanm2K l—az WnWns  + Z—‘:—’haTmnn’lK |;',2"Van'

N
+ 566 hamrk Hy' 4+ Rywhnabs Waw,, + 4nn‘rs
nl

202 2¢3
Ox.ha L WnWhn'.
2 " T we)
where, ﬁ;: Z [expression in the bracket{ }of equation (208
ﬁ, L-_—' (49)
A= 20n-n) T/ Aq= 2(n+n) Ty (50)

3 .
" L , .
Hz: EGD EEXpressn.on in the bracket{ }of equation (20{)])
n’ G\

(=1t
Ay = 2(n-n) /L Ag= 2N/ Az= 2(n+n))T/¢ (52)
s

n 3 ll. 7 /
Hs = Z=l(") H; + Jz?-;"HZ‘ (53)

n’ L
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Hé is the expression in the bracket{ Sof equation (15)

A|= ZY'LTT/[

—

A4 2 ( n/‘n-) Tr/ ¢

Ap=0 &Ha= 2n'T/L

Apg = 20n+)T/L

Minimizing the change in the potential energy expression

given by equation (48) with respect to Up, Vp

and W _, an
1

equation like (21) is obtained, where,

4bunpm? ép

|
An = 02

b=

| <2bwnmﬁ
np~ oL

bee m?*

+ oz

éP

2kn2rnnﬂ'> ép

(54)

P
C\ = -2 b2 ni ép + 4K bllhpwq H/ + bss m* K +_|‘° Y
np n n2 2
ot 13 ax n
2 !
AP“ B“P
2 b2z m 4npt? bes p 2b22 m?
BHP - Q?— + 2 én al
C?;up = -beam (P _ 2biam 2mnT Kbz ] »
o* n oz oz n*
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PI
+2E66 Ken 1T H2'
o n

3z _ |
3 2
Bnp = CP”

c3 . 3em (nebup‘rﬁr‘* , 16beemnpTt m4pa
P a2 BT IT -+ o

42 m® b2 4 p*m*12bi2) Wt an
az (2 * a2 12 éP + Y

+2m4'b27_ h* + 2pbi2K H’;// + 2nbi2 K HP”
O.4 |7— OLZ P O-Q.z nz

n
o mes s . R.m*H,3, 4 nn'n‘o‘x]
Y = Co-efficient of W, in éawpzzwnwn'[;—a,_h + e

Thermal Buckling of Conical Shells

The problem of buckling of conical shells has been

examined by many investigators. Thermal buckling problem

of isotropic conical shells has been studied by Singer and

Hoff(19) and Lu and Change(16). However to this investi-

gator's knowledge no significant work has been done in the

case of thermal buckling of orthotropic conical shells.
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As it has been done before, the critical temperature
distribution will be determined by enforcing the condition
that the change in potential energy dﬁring buckling is
minimum. The displacement functions that will be used in
this case are the same as those used in the case of
cylindrical shells. These displacement functions were first
used by Niordson(27) for conical shells and are found
to be quite satisfactory for cases where the slant length

of the cone is small in comparison to base diameter.

Theoretical Analysis

For simple supported case, displacement functions may

be assumed in the following form

N
W = cosmy Z Un cos nT (X -0/L
n=|
N
VY = Sin my Z V., SinnT (x-)/L
Nn=| »

N
W = Cosmy 2 W, SinnT (X-1)/T
nzi
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Then,

The change of Fo?‘en'h&/ energy . mon-dimensional 7[arm

A‘i} = AU/a}bH

AUy = /)/ bn(u)-r b22 1 7-—5‘”“+%“j

+ 66( b t+ Zsinot i) + 2bi2 Uz (;C+ T
S -
;,mmﬂ h&sind dzdy
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2 ¢l

o - - - -
t 2 {[ [ Nx (b‘)i)z'f' N) (_U_’)_y)z ] L Snod cl-fcl)l
o | XZS'na

(4L
— 2 - -\
t 3 [J [ bu Dg + bee (22 _ 20% >
o Z25inal  XSindt

- _ 2 _ _ _
Fbaa (22 L 9 NVt 2600y (Bz, By )
x 2 Sintd X T2Sivt

I sna dzdy .

Now substituting u, v and w in the above egquation
and minimizing the change of the potential energy expression
with respect to Up, Vp and Wp, an equation of the form as

(22) is obtained, where,

200 .5 3 2
A‘np= [ l_;z_,_.lnprr (2+0) ba2log (1tL) + tsg_‘gf:z;n ,

» !
log (1+T)] éP+ A

B\n = - [ bee MmnT bi2 m‘ﬂ' n |
P Lsind " [&nd-\éP T B"p
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C:np= -220T 5T 4+ Y,

toand P P

Anp = Bpn

B:. = bzzmlo_eClH.) bee PR (L42) Ly, 1+1)| &
"p Sind tanal 2t T e 03(+)-] P

2 _ l?i_g_ﬂ'\log(\-rt) + 9=

CnP - Svnd tano np
ASnP = Clpr‘\

3 2
BnP = CPn

{b"— log (14+7) + burtr? (2+e) [P beo (LD ,*
ton'a FE GSintal(+L)™

beem nt? { QA—D h -+ p-\nlhzzh‘n"z\aa (|+I.)
* 3L%sin* 0t °3< P 12 >

- = - - _
4+ b2 mil (L+2a)h + biz minin? hzlos CH—L)] Svlg'nf

24 sin4a C|-|-'[‘)2 cL%s'nol
& = bunpm? [CCOS K2 -1)/Kk2 - CCosKal-1)/Kz ]
np B

+ b2 [ F, (KD Cosk, + Fa(K)SnK + Fi(K)CosKa
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+ R(K) SinKa) + bee m* [[Ccosk Fi(k) + S K R(x)
Sinat

+ Cos KQ_F| (Kz) + S\‘n K2 F1 CKZ.)]

B‘ - -bizm [ COSKz FQ_CK:) - Sl.n KzF|CK‘L) - FQ_CK;) COSK|
ne Sind

+ Sin K, F:iCKl)-X - lﬁ_{_g'_';_;“ [COSKI FiCk) + Sin Ky R CKY)

-CosKa Fy (Kz) - SinK; Fa.CK:.)] ~ bmn™ [(Coskua—l)/Kl
ILsind

—@ousi—u)/Kz]
XL = b2z [Cous FalK) — SinKaRiK) — R (Ki)Ces K,
P tand

' — nThi2 Cos Kil -1V} /K
+ kD) Sinki ) S [( -1 /K,

- (cos kal-1) /Ky |

2 = m* b2z ECO.SKI Fi (K1) Sm Ky + F (K)) SinK — CosKj.
nP sn2

R(x) - Sin Ko FQ(K;_)} + bee 7.1%'—:2 [CCosKut—l)/K‘L
+ (COSK:I-I)/K}] + bGG [COSK' FI(Kg) +s'.nK|F7_(KD

— COSK,F CKy) — SinK, F,_(KL)] + bT‘éP[((asK.t‘-l)/k.
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+ (osaT-1)/ %]

y& = bam [Cos Ky Fi(K) + SinK Fa(Ky) -C@sK,F(ky)
np Sindtana

-Sin K2 F, (Kz)]

))EP = :Lz’-o( [COS K\ F,(KD t Sin K| B CKY) = Cos Ko F(Ky)
an

—Sink, Fz(Kz)] + E. i burt prut [(Cosk,f—\)ﬁz
12 14 '

- 3
- CCOS KoQ - |>/Kzz ] + 4..':9_?“ ‘.C.OS Ky F5 CKI) +
Sintd

Sink) Fe (K)) ~ CosKaFs (K2) = Sink, Fecxl)]

- 4bee Y2NTP

s [ coskiF Ck) + SinkiFaCr) +
n

2 2
. 4T M n
CosK, Fi(Ky) + SinKy F;_CK?.)] + S—-—in"o(P [COSKIF] (KI)
T Sin K R (K) + CosKy Fy(Ky) + Sin K,_cmxg] +

T%?szz [COS KiFi(k) + SinKiFa(k)) + Cosky Fy (Ky)

+ Sin K, FZCK,_)] + Y__‘__Tl’_bzzmz

A LT
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~Cos KiFaCk) + sin K Fy (k)] + b2zt Teos i B (k)
Sintd

+5ink, FL(KY) = Cos Ky F5CKy) = Sin Ky Fe(K2) |

t b2 [ Cas i FI(KD + SinKiFalK) + CosKa Fi(ky)

{3svntat
TS0k, Fy (Ky) ] }
where
- — - =11
F (z) = [lo3x - 22x* ¥ 24 %% _ z_f_:g‘_‘_ 1
2.2\ 4.4| G .6l z=1
i:lﬂ’—.:
- - S=5 27-1-:7 ]
RC2) 3.3 5.51 77! *=
f:l:{.
2 =2 6=6
Leg X v 2" x
F5CZ3:{'=3'z+?"‘9 — T +]
Z 2| 2.4 ez
_ . F=\rL
_2z _ ZZ +f}—-3 e ]
R = I°F 2\ 350 57 x|
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If only symmetric modes are considered then

\ - 0 = A _ 3 _
g = Bop= Ghp = Vopm Wyp=¥ipec

If only-gymmetriec modes-are considared-then
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Section VII

SPECIAL PROBLEMS AND NUMERICAL EXAMPLES

VII.1 Thermal Co-efficients of Composite

For the fiber and the matrix properties given in
Table 8.1, bounds on the thermal co-efficients are obtained
using the inequality developed in Section III. A computer
program is set up for finding the bounds. For obtaining
the elastic and the thermal constants of transversely
isotropic phases, methods suggested by Whitney et al (6)
and Schapery (12) have been used. The upper bound of the
thermal co-efficients, which will be of more importance
in the thermal stress and the thermal buckling problems,

are found to be,

-5
O(t-d\'rec-\-\'.o\n é .65 %10

-5
Xy . direchon S .60 %10

The above result is for the composite with 50% fiber
content.
VII.2 Thermal Stresses in Shells

For the problem of thermal stresses and thermal
buckling six different types of orthotropic material

(see Table 8.2) will be considered. Case No. 1 in the
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Table 8.2 corresponds to a special type of orthotropy

which is isotropy.

Cylindrical Shell

(I) Simple Supported Case

(A) First a temperature distribution varying
through the thickness is considered. Since the thickness
of the shell is small, the temperature distribution through
the thickness can be reasonably approximated by a linear

distribution,

T = To + T Z/a )

For a temperature distribution given by equation (1)
the displacement and the stress components will be obtained
from two different sets of equilibrium equations (See
equation (14) and (23), Section V).

For the particular temperature distribution, £( )

from equation (17), Section V, will be,

_ __'ﬁﬁ__[bn e (s TA5 Y o, ]
fe> T A% (120 ) bZa 1 (To '7-02) zab..
= K (30Y)

(2)

Substituting the value of £(&) in the equation (14),

Section V, the particular solution Wp of the equation
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is found to be

Wp =

= K/agt
Therefore, the general solution of the equation (14),
Section V, is given by,
~K, > K%
w = e [Bicoskex + BeSinkzx | +€ [
B CosKo X + B4 Sin K'Zx__l + Klq,g,“
4)
where,
K, = ‘\/EL—“‘L
(»
Ke = VA4 a2
For the simple supported case, the boundary conditions
are as follows.
w = O
Mx = O

(@ ==o0,¢

(e)
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From the boundary condition on displacements,’

Bi+Bsy = — Klapt o

Kl

—K‘ [ B Cos Kol + &g Sin Kat] + € " [ 83 Cos Kyl +Bg Sin Kztl

= ~Klget  ®

To apply the boundary conditions on moments, G# has
to be eliminated from the expression of Mk-by means of

equation (13), Section V. The moment boundary condition

then becomes,

hiv
3 2
byh [ H _ 2 | [aeCi+Za) | dz
8 o + -f/z :
hja,
"fce(z-o- 2%/a) 9z =0 2

—@h

Applying the above two boundary conditions following

equations are obtained,
2_ 2 2 Kikg P ( e)—c'“s )-“3 (T+T'1)(to)
P(r*-kK: ) (B, +B3) + KeP (Bg-B2) = E (T°+T| .-7-_—6\

-kl .
By [(K* k% ) Cos Kal + 2 Kk, Ky Sin kot e "4 B, [(KP-KE ) Sin kel

~Ky
- 2K, Ky Cos K‘Z(] e ' -+ B3[CK‘ K‘?_ )COSKQ,(—- 2K, K Sin KQ(]C o

+ Ba [(KP—kg' ) Sin K2l + 2K.Kkq Cos kol ] et

- 126 -



— h (15 y h ) } / [s} R

Where,

()

Equations (7), (8), (10) and (1ll) are solved for B., B2,
B3, B4. The radial displacement w for a shell of 100"
long, 100" diameter and .50" thick is tabulated in
Table 8.3 (Case 2). The particular temperature distri-
bution considered is T=50+10002.

To solve the same problem by means of simplified
sets of equilibrium equations (Equations (25), and (30),

Section V), it is noted that particular integral Wp is

given by

Wp = Az To h /4K4 U2

From the natural boundary condition (21), Section V
and the forced boundary condition w=o @ x= oL
following equations are obtained.

By -8, = — &N [2*p,a

Uva)

-kt
( B, sSinkl — B2 Cos Kt )€ + (B4 Cos KL —Bg Sin Kkt) e'u

=~ CT /a2 b, a s)
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&)
-k : <t KC + B4 S Kt]
e [E)|Co$Kf.+E"25'nKt]+e [E)SCOS T B4 0N
= ~ AToh |44 ()
From equations (14), (15), (16) and (17), B,, B,, By and
B, can be determined. They are given by,
B4=[(E4—D'Es+ D2E, ) N (E‘Q_—DZE3—D|YE|) J/ D3~ D
Dz - Dy D2 + D4 D2 +Dgq
D2+ D4
+ = \ne)
D3—-Dy
- E
B3 = E4 - DIE3 + D2 E\ Ba (D2 + D4) o
Da- Di (P2 - D)
- B4 - E;
1= Ba-m (20)
B = €E3-py (20
where, El’ E2, E3 and E4 are right hand side of the
equations (14), (15), (l6) and (17).
-K(
D= e cosrt
-Kt
Dy =&  singt
0 =eK"
3 ces Kl (22)
Dy = e sin K
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ﬁ% is obtained from equation (25), the stresses will

be given by,

0% =0
\( byz _ by )
Gy = (w-wp)(2 - 2%
Txy:O (23)

The hoopstresses obtained for different cases of

orthotropy is shown in Figure 8.1. The dimensions of

the shell is as before. The displacement component w is

tabulated in Table ~8.3 (Case 1).

(B) Temperature Varying in Axial Direction

A temperature distribution of the following form is

considered.

T= T, _ o (2+)

The particular integral in that case is given by,

Wp = S &

where

ArTo h

()/a4 +4 K4) (Z 5)
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E/, E2 yEz oOnd E4q are gven by ,

Ey

2
- A'L_Toh Q ’.«;_K?.(’+4Q4K4)

-a
E7_= E|e /

Ey = ~AtToh [( gt + 4 k*)

-Ua
E3e.

m
>
u

(2¢)

The hoopstress developed for such temperature dis-

tribution are shown in Figure 8.2.

(C)

Temperature Varying along Generator as Well as
Thickness

A temperature distribution of the following form is
considered:

-Z/
T = e qh+nzm)

(27)

The particular integral in this case

-*x/q

-Wp = Se

(28)

where,

&
ATh
s -_To(ﬁ'—ag +Azh\/('/q++ 4t) (29 )

Ey, E2 etc. ore 8'Vcn by )
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Cy= 8 e kts,) = <770

E,= & éQk
£3= -5
-{
54,_se/q . (30)

(II) Fixed Enad Case
For a temperature distribution as given by equation (1),

the particular integral is given by,

NP = Ar. Te ‘/1/4 k+ = 3 E b.z/az (5])

b, KR b,

To evaluate the constants B B2, B3 and B, the

1’ 4
following force boundary conditions are to be applied.

W= Wx =0 @ =:0,t (32)

To evaluate K, the equation (24), Section V, is
integrated from o to 1 and the boundary condition (31) is

utilized and the following equation for K is obtained.

K= "*/, (33)
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Fi = blrz_[:B: g_:: (Ks-’n &Q-Kc.osl(l.)—e::':q_m(ygcasn(-i. KsSin KL )
t B3 e—KQ(KCosK(*’Ks'”KL)* B4 £ (K sinKL — K cos KL )
2K? KT n
\ L
oy (63'+E’4"6|'—6,2')] _ch,go/h dx (24)
o

Fq_ = e—-buz 6;, c-—KQ KR si - C 5”
[ S (\SnKQ KosKQ)—_Q:f;_z(K,cosKQ.,.KsinKQ)

v ok( !
+ 8z € (KCosKl+K$inKQ)+ EﬁL

Z2K* 7o (Rsinkl— Keceskt )
N ] "
sv(B3+ea -8’ By ) (35)
Bi = B + BL"K | 36

The stresses are given by the following equation.

0% = Kla + (¢i6o/pn — COm )
2
Oy = Cw-wp) (bepfa - b""/b,,a )
Txﬂ PN (317)

VII.3 Thermal Buckling of Shells

For the simple supported case, only three modes are
considered to be present. Calculations for few cases
showed that if four modes are considered the values of
critical temperature differ only by 1 to 3 percent. For
different values of thickness, length and temperature

gradient, critical temperatures have been found and
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results are presented in Figures 8.3 through 8.7.

For the case of fixed end, a two mode solution is
considered. For the particular case, two-mode solution
is found to be sufficiently accurate. Digital computer is
used for all calculations and the results are presented
in Figures 8.8 and B.9. For fixed end case, only uniform

temperature rise has been considered.
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Section VIII

DISCUSSIONS AND CONCLUSIONS

The expression of effective elastic constants
developed in Section II are mainly due to Paul (7). 1In
Section III effective thermal constants for bi-direction-
ally reinforced composite have been developed. For the
particular case considered in the last section, the
numerical values of thermal co-efficients obtained, appear
reasonable,

In Section V, two sets of equilibrium equations have
been derived both for the case of cylindrical shells and
conical shells. One set of equilibrium equation is de-
rived from general equilibrium equation given by Love (15).
The other set is obtained by setting the first variation
of approximate strain energy expression equal to zero.
For cylindrical shells, Table 8.3 shows the radial dis-
placements calculated from two different sets of
equilibrium equations differ by less than 8%.

For the simple supported case, the effect of thermal
co-efficients on the hoopstress is worth noting. The
hoopstress is more sensitive to change of the thermal
co-efficient in circumferential direction than the change
of that in axial direction. Figure 8.1 shows that the

maximum hoopstress is decreased by about 71.4% from the
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isotropic case (Case No. 1) when the thermal co-efficient
in circumferential direction is reduced to 50% of its
isotropic value (Case No. 2). The maximum hoopstress,

on the other hand, increases about 21.4% from the isotropic
value, when the thermal co-efficient in axial direction

is reduced by 50%. The stiffness ratio does not have

any effect on maximum hoopstress in the particular case
considered.

The critical temperature for the case of isotropic
shell subjected to uniform temperature rise agrees with
result given by Hoff(21). Figure 8.3 through 8.7 shows
the critical temperature against various parameters for
the simple supported case.

Figure 8.3 shows the effect of L/a ratio on the
critical temperature of the shell for a radius-thickness
ratio of 2000, when the shell is subjected to uniform rise
of temperature. In the Figure 8.4, the effect of a/h ratio
on critical temperature, for a length-radius ratio of .05,
are shown. The effect of the temper;ture gradient on
critical temperatures are shown in Figure 8.5. 1In the
particular case considered, the radius-thickness ratio is
2000 and length-radius ratio is .05,

From these figures it is apparent, that in simple
supported cases, for thermal buckling to occur, the

shell has to be very thin and short. For a thick or long
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shells, the calculated critical temperature will be so
high, that the stresses at the edges will exceed elastic
limit and the plastic deformation will take place before
elastic buckling can occur.

Figure 8.3 shows that with the increase in length
the critical temperature decreases at the beginning and
after reaching a minimum value it goes on increasing.
When the length of the shell decreases, compressive hoop-
stresses which are developed because of edge constraints,
tend to spread over the entire length. The effect of this
phenomenon is to reduce the critical temperature. On the
other hand, a decrease in length increases the stiffness
of the shell and thereby tend to increase the critical
temperature. The presence of the above phenomena explains
the nature critical temperature curve in the Figure 8.3.

It is interesting to note that a 50% reduction in
the thermal co-efficient in axial direction reduces the
buckling temperature by approximately 18% from that of
isotropic case. This is, of course, the consequence of
the earlier observation that hoopstress increases with
the decrease in thermal co-efficient in axial direction.

A 50% reduction in thermal co-efficient in circum=-
ferential direction, on the other hand, increases buckling

temperature by about 250%. Here a point should be noted.
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Since in the present analysis, it has been assumed that
the elastic and the thermal properties are independent of
temperature, this analysis should give fairly accurate
results when temperature is not too high. For the above
case, since the critical temperature is too high, its
value is questionable.

The stiffness ratio plays an important role on the
critical temperature. The decrease in elastic co-efficient
in circumferential direction, decreases the critical
temperature. Within the range of .05 to .2 of 1/a ratio,
the critical temperature is reduced by 50-56% from the
isotropic critical temperature when the elastic constant
in circumferential direction is reduced by 50%. A 100%
increase in elastic constant in circumferential direction
increases the critical temperature up to 169%, in the
range considered. Therefore such an increase in elastic
constants considerably reduces the possibility of
thermal buckling. In fact for the above increment in
stiffness ratio, the buckling will occur only within the
range where the critical temperature curve dips. For any
other length plastic deformation will occur, at the edges.

Figure 8.5 indicates that the presence of thermal

gradient, with temperature higher towards inner surface,
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reduces the critical temperature. This is because of the
development of thermal moments at the supported end.

,nFigures 8.6 and 8.7 correspond to a temperature
distribution of the form T=T,e-x/a° For such an axially
varying temperature distribution, the critical temperature
Tocr is little higher than that in the case of uniform
temperature rise.

‘Figures 8.8 shows the effect of the length-radius
ratio on the critical temperature when the ends of the
shell are fixed. For this type of boundary condition,
the buckling occurs mainly because of thermal compression.
The length of the shell does not, therefore, has much
effect on the critical temperature, when the length is
not very small. For short shells the effect of hoopstress
will be noticeable. Figure 8 8 showé tﬁat the critical
temperature decreases first with the increase in length,
then it increases a little and after that it remains
constant.

Figure 8.9 shows that critical temperature monotonic-
ally decreases with the increase in radius-thickness ratio
in case of fixed end shells,

No numerical result for conical shells has been
presented. It may be noted that buckling criteria for

conical shell takes simple form when only the symmetric modes
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are present. Since, only small cone angle are considered

in the study and buckling occurs only for small value of

l/a ratio, the calculation of critical temperature on the

basis of symmetric buckling will give fairly accurate

value, for the cases considered in cylindrical shell.

Based on our foregoing discussion the following

conclusions can be made.

(1)

(2)

(3)

(4)

For simple supported case where the edges
are restrained in circumferential direction
but are free to move in axial direction, the
thermal buckling will occur only for very
thin and short shells,

A decrease in thermal co-efficients in

axial direction, increases the possibility
of thermal buckling. Quantitatively, a

50% decrease in thermal co-efficient reduces
critical temperatures by 18% from its value
in isotropic case.

A decrease in thermal co-efficient in
circumferential direction reduces the
possibility of thermal buckling.

An increase in elastic constants in

circumferential direction considerably
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(5)

(6)

(7)

(8)

reduces the thermal buckling possibility.

A negative thermal gradient (higher
temperature towards inner surface) reduces
the critical temperature and thereby makes
the shell more susceptible to buckling.

For fixed end case thermal buckling may
occur for moderately thin shells.,

The critical temperature for fixed end case
is independent of the shell length except
for short shells where hoopstresses developed
affect the critical temperature to a small
extent. 1In case of long shells, buckling
occurs due to thermal compression and the
shell may be expected to buckle into multi-
ple waves.

The general buckling criterian that has been
derived contain pre-buckling rotation terms.
For numerical results, buckling criterian
without pre-buckling rotation terms has been
considered. Pre-buckling rotation terms may
affect the buckling temperature to certain

extent and this remains to be investigated.
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In this study a buckling criterian that is
applicable to an arbitrary temperature distribution
has been developed, However numerical result presented

here is only for axi-symmetric case.
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Table 8.1

Matrix Fiber (X-direction) Fiber (Y-direction)
. -6 3 -5 _ -5
dl—6x10 /oc d2—3x10 /oc q3—0.49x10 /oc
+6 .. 6 . 6 .
El=0'44XlO psii E2=2x10 psi E3=69.8x10 psi
Y =0.382 VY =0.3 VvV =0.3
Table 8.2
e
Case No blZ/bll b22/bll Cl/bllper°F C2/bllper F
1 0.3 1.0 1072 107°
2 0.3 1.0 107° .5x10°°
3 0.3 1.0 .5%107° 1072
4 0.3 0.5 1073 1072
5 0.3 2.0 107° 107°
6 0.3 2.0 ,5x1072 1072
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Axial
Distance

5

10
15
20
25
30
35

wmawmw Displ.

Case 1 Case 2

N T . |
.1814x10™ 1 .1774x10
.2053x10" 1 .2047x10"1
.1952x10" % .1953.107 1
.1918x10" 1 .1918x1071
.1920x10” % ,1923x107%
.1923x10°T .1923x1071
.1923x10™1 ,1923x1071

2

TABLE 8

Radial Displ.

Case 1

0
»5468x10

.5911x10
.5561.10
.5473x10
.5486x10
.5495x10
.5495x10

Case 2

0
.5066x10

. 5847x10
.5581x10
«5479x%10
.5485x10
.5493x%10
.5493x10

.3

143

3

Radial Displ.

Case 1

0
.2173.107 1
-1

.2489.10
.2371.1071
.2329.107 1
.2331.1071
.2335.1071
.2335.1071

Case 2

0
.2153.,10

.2485.10
.2372.10
.2278.10
.2297.10
.2334.10
.2336.10

4

Radial Displ.

Case 1

0
.3600.10

.4557.10
.4449.10
.4296.10
.4256.10
.4261.10
.4269x10

-1
-1
-1
-1
-1
-1
-1

Case 2

0
.3531.10

.4534.10
.4449.10
.4298.10
.4256.10
.4267.10
.4267.10
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